您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2021高考数学一轮复习 第九章 平面解析几何 9.8 曲线与方程课件 理
【知识重温】一、必记3个知识点1.曲线与方程一般地,在平面直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下关系:(1)曲线上点的坐标都是①_______________.(2)以这个方程的解为坐标的点都是②__________.那么这个方程叫做③__________,这条曲线叫做④__________.这个方程的解曲线上的点曲线的方程方程的曲线2.求动点的轨迹方程的一般步骤(1)建系——建立适当的坐标系.(2)设点——设轨迹上的任一点P(x,y).(3)列式——列出动点P所满足的关系式.(4)代换——依条件式的特点,选用距离公式、斜率公式等将其转化为x,y的方程式,并化简.(5)证明——证明所求方程即为符合条件的动点轨迹方程.3.两曲线的交点(1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的⑤________,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点,方程组⑥________,两条曲线就没有交点.(2)两条曲线有交点的⑦________条件是它们的方程所组成的方程组有实数解.可见,求曲线的交点问题,就是求由它们的方程所组成的方程组的实数解问题.公共解无解充要二、必明2个易误点1.曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,前者指曲线的形状、位置、大小等特征,后者指方程(包括范围).2.求轨迹方程时易忽视轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.【小题热身】1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的充要条件.()(2)方程x2+xy=x的曲线是一个点和一条直线.()(3)动点的轨迹方程和动点的轨迹是一样的.()(4)方程y=x与x=y2表示同一曲线.()√×××2.已知M(-2,0),N(2,0),|PM|-|PN|=4,则动点P的轨迹是()A.双曲线B.双曲线左边一支C.一条射线D.双曲线右边一支解析:因为|PM|-|PN|=|MN|=4,所以动点P的轨迹是以N(2,0)为端点向右的一条射线.答案:C3.方程x=1-4y2所表示的曲线是()A.双曲线的一部分B.椭圆的一部分C.圆的一部分D.直线的一部分解析:x=1-4y2两边平方,可变为x2+4y2=1(x≥0),表示的曲线为椭圆的一部分.答案:B4.设线段AB的两个端点A,B分别在x轴、y轴上滑动,且|AB|=5,OM→=35OA→+25OB→,则点M的轨迹方程为()A.x29+y24=1B.y29+x24=1C.x225+y29=1D.y225+x29=1解析:设M(x,y),A(x0,0),B(0,y0),由OM→=35OA→+25OB→,得(x,y)=35(x0,0)+25(0,y0),则x=35x0,y=25y0,解得x0=53x,y0=52y,由|AB|=5,得53x2+52y2=25,化简得x29+y24=1.答案:A5.[2020·教材习题改编]和点O(0,0),A(c,0)距离的平方和为常数c的点的轨迹方程为____________________.解析:设点的坐标为(x,y),由题意知(x-02+y-02)2+(x-c2+y-02)2=c,即x2+y2+(x-c)2+y2=c,即2x2+2y2-2cx+c2-c=0.答案:2x2+2y2-2cx+c2-c=0考点一直接法求轨迹方程[自主练透型]1.[2020·杭州调研]已知点F(0,1),直线l:y=-1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且QP→·QF→=FP→·FQ→,则动点P的轨迹C的方程为()A.x2=4yB.y2=3xC.x2=2yD.y2=4x解析:设点P(x,y),则Q(x,-1).∵QP→·QF→=FP→·FQ→,∴(0,y+1)·(-x,2)=(x,y-1)·(x,-2),即2(y+1)=x2-2(y-1),整理得x2=4y,∴动点P的轨迹C的方程为x2=4y.答案:A2.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程是()A.x2+y2=2B.x2+y2=4C.x2+y2=2(x≠±2)D.x2+y2=4(x≠±2)解析:解法一设P(x,y),∵△MPN为直角三角形,∴|MP|2+|NP|2=|MN|2,∵(x+2)2+y2+(x-2)2+y2=16,整理得x2+y2=4.∵M,N,P不共线,∴x≠±2,∴轨迹方程为x2+y2=4(x≠±2).解法二设P(x,y),∵△MPN为直角三角形,∴PM⊥PN,∴PM→·PN→=0,∴(-2-x,-y)·(2-x,-y)=0,整理得,x2+y2=4.∵M、N、P不共线,∴x≠±2.∴轨迹方程为x2+y2=4.(x≠±2)答案:D悟·技法直接法求轨迹方程的方法在不能确定轨迹形状时,要根据题设条件,通过“建(系)、设(点)、限(条件)、代(代入坐标)、化(化简与证明)”的步骤求轨迹方程,关键是把位置关系(如垂直、平行、距离等)转化为坐标关系.考点二定义法求轨迹方程[互动讲练型][例1]已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.求C的方程.解析:由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.因为圆P与圆M外切并且与圆N内切,所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4.由椭圆的定义可知,曲线C是以M,N为左,右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x24+y23=1(x≠-2).悟·技法定义法求轨迹方程的解题策略(1)在利用圆锥曲线的定义法求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.(2)利用定义法求轨迹方程时,还要看轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x或y进行限制(如变式练1).[变式练]——(着眼于举一反三)1.本例中圆M,N方程分别变为“圆M:(x+4)2+y2=2;圆N:(x-4)2+y2=2”,其余条件不变,求C的方程.解析:设动圆P的半径为r,∴|PM|=r+2,|PN|=r-2.∴|PM|-|PN|=22,又M(-4,0),N(4,0),∴|MN|=8.∴22<|MN|.由双曲线定义知,P点轨迹是以M,N为焦点的双曲线的右支.∵a=2,c=4,∴b2=c2-a2=14.∴方程为x22-y214=1(x≥2).2.若本例中的条件“动圆P与圆M外切并且与圆N内切”改为“动圆P与圆M、圆N都外切”,则圆心P的轨迹方程为________.解析:因为圆M与圆N相内切,设其切点为A,又因为动圆P与圆M、圆N都外切,所以动圆P的圆心在MN的连线上,且经过点A,因此动点P的轨迹是射线AM的反向延长线(不含切点A),其方程为:y=0(x-2).答案:y=0(x-2)考点三代入法(相关点法)求轨迹方程[互动讲练型][例2][2017·全国卷Ⅱ]设O为坐标原点,动点M在椭圆C:x22+y2=1上,过M作x轴的垂线,垂足为N,点P满足NP→=2NM→.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且OP→·PQ→=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.解析:(1)设P(x,y),M(x0,y0),则N(x0,0),NP→=(x-x0,y),NM→=(0,y0).由NP→=2NM→得x0=x,y0=22y.因为M(x0,y0)在C上,所以x22+y22=1.因此点P的轨迹方程为x2+y2=2.(2)由题意知F(-1,0).设Q(-3,t),P(m,n),则OQ→=(-3,t),PF→=(-1-m,-n),OQ→·PF→=3+3m-tn,OP→=(m,n),PQ→=(-3-m,t-n).由OP→·PQ→=1得-3m-m2+tn-n2=1,又由(1)知m2+n2=2,故3+3m-tn=0.所以OQ→·PF→=0,即OQ→⊥PF→.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.悟·技法代入法也叫坐标转移法,是求轨迹方程常用的方法,其题目特征是:点P的运动与点Q的运动相关,且点Q的运动有规律(有方程),只需将点P的坐标转移到点Q的方程中,整理可得点P的轨迹方程.[变式练]——(着眼于举一反三)3.[2020·河北石家庄模拟]已知点Q在椭圆C:x216+y210=1上,点P满足OQ→=12(OF1→+OP→)(其中O为坐标原点,F1为椭圆C的左焦点),则点P的轨迹为()A.圆B.抛物线C.双曲线D.椭圆解析:因为点P满足OQ→=12(OF1→+OP→),所以Q是线段PF1的中点.设P(a,b),由于F1为椭圆C:x216+y210=1的左焦点,则F1(-6,0),故Qa-62,b2,由点Q在椭圆C:x216+y210=1上,则点P的轨迹方程为a-6264+b240=1,故点P的轨迹为椭圆.答案:D
本文标题:2021高考数学一轮复习 第九章 平面解析几何 9.8 曲线与方程课件 理
链接地址:https://www.777doc.com/doc-8217533 .html