您好,欢迎访问三七文档
第十一章计数原理、概率、随机变量及其分布第四节古典概型与几何概型2[最新考纲]1.理解古典概型及其概率计算公式.2.会计算一些随机事件所包含的基本事件数及事件发生的概率.3.了解随机数的意义,能运用随机模拟的方法估计概率.4.了解几何概型的意义.3课前自主回顾41.古典概型具有以下两个特征的随机试验的数学模型称为古典概型(古典的概率模型).(1)试验的所有可能结果只有________,每次试验只出现其中的一个结果;(2)每一个试验结果出现的可能性______.有限个相同52.古典概型的概率公式P(A)=___________________________.3.几何概型(1)向平面上有限区域(集合)G内随机地投掷点M,若点M落在___________的概率与G1的_____成正比,而与G的______、_____无关,即P(点M落在G1)=________,则称这种模型为几何概型.(2)几何概型中的G也可以是________或________的有限区域,相应的概率是__________或___________.事件A包含的可能结果数试验的所有可能结果数=mn子区域G1G面积形状位置G1的面积G的面积空间中直线上体积之比长度之比6[常用结论]几种常见的几何概型(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关;7(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题;(3)与体积有关的几何概型,可借助空间几何体的体积公式解答问题.8[答案](1)√(2)×(3)×(4)×一、思考辨析(正确的打“√”,错误的打“×”)(1)随机模拟方法是以事件发生的频率估计概率.()(2)从区间[1,10]内任取一个数,取到1的概率是110.()(3)概率为0的事件一定是不可能事件.()(4)从市场上出售的标准为500±5g的袋装食盐中任取一袋测其重量,属于古典概型.()9D[一枚硬币连掷2次可能出现(正,正)、(反,反)、(正,反)、(反,正)四种情况,只有一次出现正面的情况有两种,故P=24=12.]二、教材改编1.一枚硬币连掷2次,只有一次出现正面的概率为()A.23B.14C.13D.1210C[试验的全部结果构成的区域长度为5,所求事件的区域长度为2,故所求概率为P=25.]2.某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过2分钟的概率是()A.35B.45C.25D.1511A[从袋中任取一球,有15种取法,其中取到白球的取法有6种,则所求概率为P=615=25.]3.袋中装有6个白球,5个黄球,4个红球,从中任取一球,则取到白球的概率为()A.25B.415C.35D.231256[掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6种,所以点数不相同的概率P=1-636=56.]4.同时掷两个骰子,向上点数不相同的概率为________.13课堂考点探究14考点1简单的古典概型计算古典概型事件的概率可分3步(1)计算基本事件总个数n.(2)计算事件A所包含的基本事件的个数m.(3)代入公式求出概率P.提醒:解题时可根据需要灵活选择列举法、列表法或树形图法.15(1)甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得“手气最佳”(即乙领取的钱数不少于其他任何人)的概率是()A.34B.13C.310D.2516(2)(2017·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.110B.15C.310D.2517(3)(2019·全国卷Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“--”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.516B.1132C.2132D.111618(1)D(2)D(3)A[(1)用(x,y,z)表示乙、丙、丁抢到的红包分别为x元、y元、z元.乙、丙、丁三人抢完6元钱的所有不同的可能结果有10种,分别为(1,1,4),(1,4,1),(4,1,1),(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2).乙获得“手气最佳”的所有不同的可能结果有4种,分别为(4,1,1),(3,1,2),(3,2,1),(2,2,2).根据古典概型的概率计算公式,得乙获得“手气最佳”的概率P=410=25.19(2)从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,∴所求概率P=1025=25.故选D.20(3)由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为C36=6×5×46=20.根据古典概型的概率计算公式得,所求概率P=2064=516.故选A.]21古典概型中基本事件个数的探求方法(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x,y)可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同.(3)排列组合法:在求一些较复杂的基本事件个数时,可利用排列或组合的知识.22[教师备选例题]1.设平面向量a=(m,1),b=(2,n),其中m,n∈{1,2,3,4},记“a⊥(a-b)”为事件A,则事件A发生的概率为()A.18B.14C.13D.1223A[有序数对(m,n)的所有可能结果为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.由a⊥(a-b),得m2-2m+1-n=0,即n=(m-1)2,由于m,n∈{1,2,3,4},故事件A包含的基本事件为(2,1)和(3,4),共2个,所以所求的概率P(A)=216=18.]24120[1,2,3,4,5可组成A55=120个不同的五位数,其中满足题目条件的五位数中,最大的5必须排在中间,左、右各两个数字只要选出,则排列位置就随之而定,满足条件的五位数有C24C22=6个,故出现a1<a2<a3>a4>a5特征的五位数的概率为6120=120.]2.用1,2,3,4,5组成无重复数字的五位数,若用a1,a2,a3,a4,a5分别表示五位数的万位、千位、百位、十位、个位,则出现a1<a2<a3>a4>a5特征的五位数的概率为________.251.(2019·武汉模拟)将7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球,那么甲盒中恰好有3个小球的概率为()A.310B.25C.320D.1426C[将7个相同的小球投入甲、乙、丙、丁4个不同的小盒中,每个小盒中至少有1个小球有C36种放法,甲盒中恰好有3个小球有C23种放法,结合古典概型的概率计算公式得所求概率为C23C36=320.故选C.]272.已知a∈{0,1,2},b∈{-1,1,3,5},则函数f(x)=ax2-2bx在区间(1,+∞)上为增函数的概率是()A.512B.13C.14D.1628A[∵a∈{0,1,2},b∈{-1,1,3,5},∴基本事件总数n=3×4=12.函数f(x)=ax2-2bx在区间(1,+∞)上为增函数,①当a=0时,f(x)=-2bx,符合条件的只有(0,-1),即a=0,b=-1;②当a≠0时,需要满足ba≤1,符合条件的有(1,-1),(1,1),(2,-1),(2,1),共4种.∴函数f(x)=ax2-2bx在区间(1,+∞)上为增函数的概率是P=512.]29考点2古典概型与统计的综合求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,其解题流程为:化事件将题目条件中的相关知识转化为事件辨概型判断事件是古典概型还是其他概型列事件选用合适的方法列举基本事件求概率代入相应的概率公式求解30(2019·天津高考)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.31(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.32员工项目ABCDEF子女教育○○×○×○继续教育××○×○○大病医疗×××○××住房贷款利息○○××○○住房租金××○×××赡养老人○○×××○33(ⅰ)试用所给字母列举出所有可能的抽取结果;(ⅱ)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.[解](1)由已知,老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.34(2)(ⅰ)从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.(ⅱ)由表格知,符合题意的所有可能结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以,事件M发生的概率P(M)=1115.35有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计的结合题,无论是直接描述还是利用概率分布表、频率分布直方图、茎叶图等给出信息,准确从题中提炼信息是解题的关键.36[教师备选例题]某县共有90个农村淘宝服务网点,随机抽取6个网点统计其元旦期间的网购金额(单位:万元)的茎叶图如图所示,其中茎为十位数,叶为个位数.37(1)根据茎叶图计算样本数据的平均数;(2)若网购金额(单位:万元)不小于18的服务网点定义为优秀服务网点,其余为非优秀服务网点,根据茎叶图推断这90个服务网点中优秀服务网点的个数;(3)从随机抽取的6个服务网点中再任取2个作网购商品的调查,求恰有1个网点是优秀服务网点的概率.38[解](1)由题意知,样本数据的平均数x=4+6+12+12+18+206=12.(2)样本中优秀服务网点有2个,概率为26=13,由此估计这90个服务网点中优秀服务网点有90×13=30(个).39(3)样本中优秀服务网点有2个,分别记为a1,a2,非优秀服务网点有4个,分别记为b1,b2,b3,b4,从随机抽取的6个服务网点中再任取2个的可能情况有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b3),(b1,b4),(b2,b3),(b2,b4),(b3,b4),共15种,记“恰有1个是优秀服务网点”为事件M,则事件M包含的可能情况有:(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),共8种,故所求概率P(M)=815.40移动公司拟在国庆期间推出4G套餐,对国庆节当日办理套餐的客户进行优惠,优惠方
本文标题:2021高考数学一轮复习 第11章 计数原理、概率、随机变量及其分布 第4节 古典概型与几何概型课件
链接地址:https://www.777doc.com/doc-8217626 .html