您好,欢迎访问三七文档
第3讲合情推理与演绎推理第十二章复数、算法、推理与证明1.推理(1)定义:根据一个或几个已知的_______来确定一个新的_______的思维过程.(2)分类:推理___________________________判断判断合情推理演绎推理2.合情推理归纳推理类比推理定义由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理特点由_______到_______、由_______到_______的推理由_______到_______的推理部分整体个别一般特殊特殊3.演绎推理(1)定义:从_____________________出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.(2)特点:演绎推理是由_______到_______的推理.(3)模式:三段论①大前提:已知的______________;②小前提:所研究的特殊情况;③结论:根据一般原理,对______________做出的判断.一般性的原理一般特殊一般原理特殊情况判断正误(正确的打“√”,错误的打“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.()(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.()(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.()(4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.()答案:(1)×(2)√(3)×(4)×(教材习题改编)已知数列{an}中,a1=1,n≥2时,an=an-1+2n-1,依次计算a2,a3,a4后,猜想an的表达式是()A.an=3n-1B.an=4n-3C.an=n2D.an=3n-1解析:选C.由a1=1,an=an-1+2n-1,则a2=a1+2×2-1=4;a3=a2+2×3-1=9;a4=a3+2×4-1=16,所以an=n2.(2017·高考全国卷Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩解析:选D.依题意,四人中有2位优秀,2位良好,由于甲知道乙、丙的成绩,但还是不知道自己的成绩,则乙、丙必有1位优秀,1位良好,甲、丁必有1位优秀,1位良好,因此,乙知道丙的成绩后,必然知道自己的成绩;丁知道甲的成绩后,必然知道自己的成绩,因此选择D.推理“①矩形是平行四边形,②三角形不是平行四边形,③三角形不是矩形”中的小前提是________.解析:由演绎推理三段论可知,①是大前提,②是小前提,③是结论.答案:②在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.解析:V1V2=13S1h113S2h2=S1S2·h1h2=14×12=18.答案:1∶8角度一与数字(数列)有关的推理观察下列等式:1-12=12,1-12+13-14=13+14,1-12+13-14+15-16=14+15+16,…据此规律,第n个等式可为________.归纳推理(多维探究)【解析】等式左边的特征:第1个等式有2项,第2个有4项,第3个有6项,且正负交错,故第n个等式左边有2n项且正负交错,应为1-12+13-14+…+12n-1-12n;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n个有n项,且由前几个的规律不难发现第n个等式右边应为1n+1+1n+2+…+12n.【答案】1-12+13-14+…+12n-1-12n=1n+1+1n+2+…+12n角度二与式子有关的推理设函数f(x)=xx+2(x0),观察:f1(x)=f(x)=xx+2,f2(x)=f(f1(x))=x3x+4,f3(x)=f(f2(x))=x7x+8,f4(x)=f(f3(x))=x15x+16,…根据以上事实,由归纳推理可得:当n∈N*且n≥2时,fn(x)=f(fn-1(x))=________.【解析】根据题意知,分子都是x,分母中的常数项依次是2,4,8,16,…,可知fn(x)的分母中常数项为2n,分母中x的系数为2n-1,故fn(x)=f(fn-1(x))=x(2n-1)x+2n.【答案】x(2n-1)x+2n角度三与图形变化有关的推理我国的刺绣有着悠久的历史,如图所示中的(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形,则f(n)的表达式为()A.f(n)=2n-1B.f(n)=2n2C.f(n)=2n2-2nD.f(n)=2n2-2n+1【解析】我们考虑f(2)-f(1)=4,f(3)-f(2)=8,f(4)-f(3)=12,…,结合图形不难得到f(n)-f(n-1)=4(n-1),累加得f(n)-f(1)=2n(n-1)=2n2-2n,故f(n)=2n2-2n+1.【答案】D归纳推理问题的常见类型及解题策略(1)与“数字”相关问题:主要是观察数字特点,找出等式左右两侧的规律.(2)与式子有关的推理:观察所给几个不等式两边式子的特点,注意纵向看、找出隐含规律.(3)与图形有关的推理:合理利用特殊图形归纳推理得出结论.1.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是杨辉三角数阵,记an为图中第n行各个数之和,则a5+a11的值为()A.528B.1020C.1038D.1040解析:选D.a1=1,a2=2,a3=4=22,a4=8=23,a5=16=24,…,所以an=2n-1,a5+a11=24+210=1040,故选D.2.(2019·青岛模拟)某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度相等,两两夹角为120°;二级分形图是在一级分形图的每条线段末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120°,…,依此规律得到n级分形图.n级分形图中共有________条线段.解析:分形图的每条线段的末端出发再生成两条线段,由题图知,一级分形图有3=3×2-3条线段,二级分形图有9=3×22-3条线段,三级分形图中有21=3×23-3条线段,按此规律n级分形图中的线段条数an=3×2n-3(n∈N*).答案:3×2n-3(n∈N*)如图,在Rt△ABC中,∠C=90°,设a,b,c分别表示三条边的长度,由勾股定理,得c2=a2+b2.类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.类比推理(典例迁移)【解】如题图所示,在Rt△ABC中,∠C=90°.设a,b,c分别表示3条边的长度,由勾股定理,得c2=a2+b2.类似地,在四面体PDEF中,∠PDF=∠PDE=∠EDF=90°.设S1,S2,S3和S分别表示△PDF,△PDE,△EDF和△PEF的面积,相应于直角三角形的2条直角边a,b和1条斜边c,图中的四面体有3个“直角面”S1,S2,S3和1个“斜面”S.于是,类比勾股定理的结构,我们猜想S2=S21+S22+S23成立.[迁移探究](变条件)若本例条件“由勾股定理,得c2=a2+b2”换成“cos2A+cos2B=1”,则在空间中,给出四面体性质的猜想.解:如图,在Rt△ABC中,cos2A+cos2B=bc2+ac2=a2+b2c2=1.于是把结论类比到四面体PA′B′C′中,我们猜想,四面体PA′B′C′中,若三个侧面PA′B′,PB′C′,PC′A′两两互相垂直,且分别与底面所成的角为α,β,γ,则cos2α+cos2β+cos2γ=1.1.由代数式的乘法法则类比推导向量的数量积的运算法则:①由“mn=nm”类比得到“a·b=b·a”;②由“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;③由“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;④由“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;⑤由“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;⑥由“acbc=ab”类比得到“a·cb·c=ab”.以上的式子中,类比得到的结论正确的个数是()A.1B.2C.3D.4解析:选B.由向量的数量积的运算律可知①②正确,③④⑤⑥错误.故选B.2.(2019·沈阳质量检测(一))在推导等差数列前n项和的过程中,我们使用了倒序相加的方法,类比可求得sin21°+sin22°+…+sin289°=________.解析:令S=sin21°+sin22°+sin23°+…+sin289°①,S=sin289°+sin288°+sin287°+…+sin21°②,则①+②得2S=89,S=892.答案:892数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2nSn(n∈N*).证明:(1)数列Snn是等比数列;(2)Sn+1=4an.演绎推理(师生共研)【证明】(1)因为an+1=Sn+1-Sn,an+1=n+2nSn,所以(n+2)Sn=n(Sn+1-Sn),即nSn+1=2(n+1)Sn.故Sn+1n+1=2·Snn,(小前提)故Snn是以1为首项,2为公比的等比数列.(结论)(大前提是等比数列的定义)(2)由(1)可知Sn+1n+1=4·Sn-1n-1(n≥2),所以Sn+1=4(n+1)·Sn-1n-1=4·n-1+2n-1·Sn-1=4an(n≥2).又因为a2=3S1=3,S2=a1+a2=1+3=4=4a1,所以对于任意正整数n,都有Sn+1=4an.演绎推理的推证规则(1)演绎推理是从一般到特殊的推理,其一般形式是三段论,应用三段论解决问题时,应当首先明确什么是大前提和小前提,如果前提是显然的,则可以省略.(2)在推理论证过程中,一些稍复杂一点的证明题常常要由几个三段论才能完成.已知函数y=f(x)满足:对任意a,b∈R,a≠b,都有af(a)+bf(b)af(b)+bf(a),试证明:f(x)为R上的单调增函数.证明:设x1,x2∈R,取x1x2,则由题意得x1f(x1)+x2f(x2)x1f(x2)+x2f(x1),所以x1[f(x1)-f(x2)]+x2[f(x2)-f(x1)]0,[f(x2)-f(x1)](x2-x1)0,因为x1x2,所以f(x2)-f(x1)0,f(x2)f(x1).所以y=f(x)为R上的单调增函数.逻辑推理——归纳推理中的核心素养(2019·高考全国卷Ⅱ)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙【解析】依题意,若甲预测正确,则乙、丙均预测错误,此时三人成绩由高到低的次序为甲、乙、丙;若乙预测正确,此时丙预测也正确,这与题意相矛盾;若丙预测正确,则甲预测错误,此时乙预测正确,这与题意相矛盾.综上所述,三人成绩由高到低的次序为甲、乙、丙,选A.【答案】A本题体现数学素养中的逻辑推理,表现为人们在数学活动中进行交流的基本思维品质,处理此类问题常采用辨证推理的思想.(2019·湖北武汉武昌区调研)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙
本文标题:2020版高考数学大一轮复习 第十二章 复数、算法、推理与证明 3 第3讲 合情推理与演绎推理课件
链接地址:https://www.777doc.com/doc-8236138 .html