您好,欢迎访问三七文档
第11讲函数模型及其应用第二章函数概念与基本初等函数1.几种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=bax+c(a,b,c为常数,a0且a≠1,b≠0)对数函数模型f(x)=blogax+c(a,b,c为常数,a0且a≠1,b≠0)幂函数模型f(x)=axn+b(a,b,n为常数,a≠0,n≠0)2.三种函数模型性质比较y=ax(a1)y=logax(a1)y=xn(n0)在(0,+∞)上的单调性______________________________增长速度____________________相对平稳图象的变化随x值增大,图象与______接近平行随x值增大,图象与______接近平行随n值变化而不同增函数增函数增函数越来越快越来越慢y轴x轴常用知识拓展“对勾”函数f(x)=x+ax(a0)的性质(1)该函数在(-∞,-a]和[a,+∞)上单调递增,在[-a,0)和(0,a]上单调递减.(2)当x0时,x=a时取最小值2a;当x0时,x=-a时取最大值-2a.判断正误(正确的打“√”,错误的打“×”)(1)幂函数增长比一次函数增长更快.()(2)在(0,+∞)内,随着x的增大,y=ax(a1)的增长速度会超过并远远大于y=xα(α0)的增长速度.()(3)指数型函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题.()答案:(1)×(2)√(3)√下列函数中,随x的增大,y的增长速度最快的是()A.y=1100exB.y=100lnxC.y=x100D.y=100·2x答案:A生产一定数量商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=12x2+2x+20(万元).一万件售价是20万元,为获取更大利润,该企业一个月应生产该商品数量为()A.36万件B.18万件C.22万件D.9万件解析:选B.设利润为L(x),则利润L(x)=20x-C(x)=-12(x-18)2+142,当x=18时,L(x)有最大值.某城市客运公司确定客票价格的方法是:如果行程不超过100km,票价是0.5元/km,如果超过100km,超过100km的部分按0.4元/km定价,则客运票价y(元)与行驶千米数x(km)之间的函数关系式是________.解析:由题意可得y=0.5x,0x≤100,0.4x+10,x100.答案:y=0.5x,0x≤100,0.4x+10,x100(教材习题改编)某公司为了业务发展制定了一个激励销售人员的奖励方案,在销售额x为8万元时,奖励1万元.销售额x为64万元时,奖励4万元.若公司拟定的奖励模型为y=alog4x+b.某业务员要得到8万元奖励,则他的销售额应为________万元.解析:依题意得alog48+b=1alog464+b=4,即32a+b=1,3a+b=4.解得a=2,b=-2.所以y=2log4x-2,当y=8时,即2log4x-2=8.解得x=1024.答案:1024用函数图象刻画变化过程(师生共研)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同的路程,三辆汽车中,甲车消耗汽油量最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该城市用丙车比用乙车更省油【解析】根据图象知消耗1升汽油,乙车最多行驶里程大于5千米,故选项A错;以相同速度行驶时,甲车燃油效率最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故选项B错;甲车以80千米/小时的速度行驶时燃油效率为10千米/升,行驶1小时,里程为80千米,消耗8升汽油,故选项C错;最高限速80千米/小时,丙车的燃油效率比乙车高,因此相同条件下,在该市用丙车比用乙车更省油,故选项D对.【答案】D判断函数图象与实际问题变化过程相吻合的方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.已知正方形ABCD的边长为4,动点P从B点开始沿折线BCDA向A点运动.设点P运动的路程为x,△ABP的面积为S,则函数S=f(x)的图象是()解析:选D.依题意知当0≤x≤4时,f(x)=2x;当4x≤8时,f(x)=8;当8x≤12时,f(x)=24-2x,观察四个选项知D项符合要求.二次函数、分段函数、“对勾”函数模型(师生共研)小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x万件,需另投入流动成本为W(x)万元,在年产量不足8万件时,W(x)=13x2+x(万元).在年产量不小于8万件时,W(x)=6x+100x-38(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?【解】(1)因为每件商品售价为5元,则x万件商品销售收入为5x万元,依题意得,当0x8时,L(x)=5x-13x2+x-3=-13x2+4x-3;当x≥8时,L(x)=5x-6x+100x-38-3=35-x+100x.所以L(x)=-13x2+4x-3,0x8,35-x+100x,x≥8.(2)当0x8时,L(x)=-13(x-6)2+9.此时,当x=6时,L(x)取得最大值L(6)=9万元.当x≥8时,L(x)=35-x+100x≤35-2x·100x=35-20=15,当且仅当x=100x时等号成立,即x=10时,L(x)取得最大值15万元.因为915,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.解决实际应用问题的四大步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型.(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型.(3)求模:求解数学模型,得出数学结论.(4)还原:将数学问题还原为实际问题.以上过程用框图表示如下:[提醒](1)构建函数模型时不要忘记考虑函数的定义域.(2)利用模型f(x)=ax+bx求解最值时,注意取得最值时等号成立的条件.1.某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R元),若年销售量为(30-52R)万件,要使附加税不少于128万元,则R的取值范围是()A.[4,8]B.[6,10]C.[4%,8%]D.[6%,10%]解析:选A.根据题意,要使附加税不少于128万元,需30-52R×160×R%≥128,整理得R2-12R+32≤0,解得4≤R≤8,即R∈[4,8].2.据气象中心观察和预测:发生于沿海M地的台风一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为时间t(h)内台风所经过的路程s(km).(1)当t=4时,求s的值;(2)将s随t变化的规律用数学关系式表示出来;(3)若N城位于M地正南方向,且距M地650km,试判断这场台风是否会侵袭到N城,如果会,在台风发生后多长时间它将侵袭到N城?如果不会,请说明理由.解:(1)由图象可知,直线OA的方程是v=3t,直线BC的方程是v=-2t+70.当t=4时,v=12,所以s=12×4×12=24.(2)当0≤t≤10时,s=12×t×3t=32t2;当10t≤20时,s=12×10×30+(t-10)×30=30t-150;当20t≤35时,s=150+300+12×(t-20)×(-2t+70+30)=-t2+70t-550.综上可知,s随t变化的规律是s=32t2,t∈[0,10],30t-150,t∈(10,20],-t2+70t-550,t∈(20,35].(3)当t∈[0,10]时,smax=32×102=150650,当t∈(10,20]时,smax=30×20-150=450650,当t∈(20,35]时,令-t2+70t-550=650,解得t=30或t=40(舍去),即在台风发生30小时后将侵袭到N城.指数、对数函数模型(师生共研)(1)某公司为激励创新,计划逐年增加研发资金投入,若该公司2017年全年投入的研发资金为300万元,在此基础上,每年投入的研发资金比上一年增长10%,则该公司全年投入的研发资金开始超过600万元的年份是()(参考数据:lg1.1=0.041,lg2=0.301)A.2023年B.2024年C.2025年D.2026年(2)里氏震级M的计算公式为:M=lgA-lgA0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.【解析】(1)设从2017年后,第x年该公司全年投入的研发资金为y万元,则y=300×(1+10%)x,依题意得,300×(1+10%)x600,即1.1x2,两边取对数可得xlg2lg1.1=0.3010.041≈7.3,则x≥8,即该公司全年投入的研发资金开始超过600万元的年份是2025年.故选C.(2)M=lg1000-lg0.001=3-(-3)=6.设9级地震的最大振幅和5级地震的最大振幅分别为A1,A2,则9=lgA1-lgA0=lgA1A0,则A1A0=109,5=lgA2-lgA0=lgA2A0,则A2A0=105,所以A1A2=104.即9级地震的最大振幅是5级地震最大振幅的10000倍.【答案】(1)C(2)610000指数型、对数型函数模型(1)在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为y=N(1+p)x(其中N为基础数,p为增长率,x为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.(2)有关对数型函数的应用题,一般都会给出函数解析式,要求根据实际情况求出函数解析式中的参数,或给出具体情境,从中提炼出数据,代入解析式求值,然后根据值回答其实际意义.候鸟每年都要随季节的变化而进行大规模地迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q之间的关系为:v=a+blog3Q10(其中a,b是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.(1)求出a,b的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要多少个单位?解:(1)由题意可知,当这种鸟类静止时,它的速度为0m/s,此时耗氧量为30个单位,故有a+blog33010=0,即a+b=0;当耗氧量为90个单位时,速度为1m/s,故a+blog39010=1,整理得a+2b=1.解方程组a+b=0,a+2b=1,得a=-1,b=1.(2)由(1)知,v=a+blog3Q10=-1+log3Q10.所以要使飞行速度不低于2m/s,则有v≥2,所以-1+log3Q10≥2,即log3Q10≥3,解得Q10≥27
本文标题:2020版高考数学大一轮复习 第二章 函数概念与基本初等函数 11 第11讲 函数模型及其应用课件
链接地址:https://www.777doc.com/doc-8236349 .html