您好,欢迎访问三七文档
最新课程标准:在现实问题中,能利用函数构建模型,解决问题.知识点几类常见函数模型名称解析式条件一次函数模型y=kx+bk≠0反比例函数模型y=kx+bk≠0二次函数模型一般式:y=ax2+bx+c顶点式:y=ax+b2a2+4ac-b24aa≠0幂函数模型y=axn+ba≠0,n≠1状元随笔建立函数模型解决实际问题的基本思路[教材解难]建立函数模型应把握的三个关口(1)事理关:通过阅读、理解,明白问题讲什么,熟悉实际背景,为解题打开突破口.(2)文理关:将实际问题的文字语言转化为数学的符号语言,用数学式子表达数学关系.(3)数理关:在构建数学模型的过程中,利用已有的数学知识进行检验,从而认定或构建相应的数学问题.[基础自测]1.某厂日产手套总成本y(元)与手套日产量x(副)的关系式为y=5x+4000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为()A.200副B.400副C.600副D.800副解析:利润z=10x-y=10x-(5x+4000)≥0.解得x≥800.答案:D2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()解析:距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.答案:C3.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为()A.45.606万元B.45.6万元C.45.56万元D.45.51万元解析:依题意可设甲销售x辆,则乙销售(15-x)辆,总利润S=L1+L2,则总利润S=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30=-0.15(x-10.2)2+0.15×10.22+30(0≤x≤15且x∈N),所以当x=10时,Smax=45.6(万元).答案:B4.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为:y=4x,1≤x10,x∈N*2x+10,10≤x100,x∈N*1.5x,x≥100,x∈N*其中,x代表拟录用人数,y代表面试人数.若应聘的面试人数为60,则该公司拟录用人数为________.解析:令y=60,若4x=60,则x=1510,不合题意;若2x+10=60,则x=25,满足题意;若1.5x=60,则x=40100,不合题意.故拟录用人数为25人.答案:25题型一一次、二次函数模型[经典例题]例1某商人将进货单价为8元的某种商品按10元一个销售时,每天可卖出100个.现在他采用提高售价,减少进货量的办法增加利润,已知这种商品销售单价每涨1元,销售量就减少10个,问他将售价定为多少元时,才能使每天所赚的利润最大?并求出最大值.【解析】设每个提价x元(x≥0,x∈N),利润为y元.每天销售总额为(10+x)(100-10x)元,进货总额=8(100-10x)元,显然100-10x0,即x10,则y=(10+x)(100-10x)-8(100-10x)=(2+x)(100-10x)=-10(x-4)2+360(0≤x10,x∈N).当x=4时,y取得最大值,此时销售单价应为14元,最大利润为360元.答:当售价定为14元时,可使每天所赚的利润最大,最大利润为360元.可根据实际问题建立二次函数模型解析式.方法归纳1.利用一次函数模型解决实际问题时,需注意以下两点:(1)待定系数法是求一次函数解析式的常用方法.(2)当一次项系数为正时,一次函数为增函数;当一次项系数为负时,一次函数为减函数.2.二次函数模型主要用来解决实际问题中的利润最大、用料最省等问题,是高考考查的重点.解题时,建立二次函数解析式后,可以利用配方法、判别式法、换元法、函数的单调性等来求函数的最值,从而解决实际问题.跟踪训练1某列火车从北京西站开往石家庄,全程277km.火车出发10min开出13km,之后以120km/h的速度匀速行驶.试写出火车行驶的总路程s与匀速行驶的时间t之间的函数关系式,并求离开北京2h时火车行驶的路程.解析:因为火车匀速行驶的总时间为(277-13)÷120=115(h),所以0≤t≤115.因为火车匀速行驶th所行驶的路程为120tkm,所以火车行驶的总路程s与匀速行驶的时间t之间的函数关系式为s=13+120t0≤t≤115.离开北京2h时火车匀速行驶的时间为2-16=116(h),此时火车行驶的路程s=13+120×116=233(km).求出火车匀速行驶的总时间,可得定义域,再建立总路程关于时间的函数模型.题型二分段函数[教材P94例2]例2一辆汽车在某段路程中行驶的平均速率v(单位:km/h)与时间t(单位:h)的关系如图所示,(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立行驶这段路程时汽车里程表读数s(单位:km)与时间t的函数解析式,并画出相应的图象.【解析】(1)阴影部分的面积为50×1+80×1+90×1+75×1+65×1=360.阴影部分的面积表示汽车在这5h内行驶的路程为360km.(2)根据题图,有s=50t+2004,0≤t1,80t-1+2054,1≤t2,90t-2+2134,2≤t3,75t-3+2224,3≤t4,65t-4+2299,4≤t≤5.这个函数的图象如下图所示.当时间t在[0,5]内变化时,对于任意的时刻t都有唯一确定的行驶路程与之相对应.根据题图,在时间段[0,1),[1,2),[2,3),[3,4),[4,5]内行驶的平均速率分别为50km/h,80km/h,90km/h,75km/h,65km/h,因此在每个时间段内,行驶路程与时间的关系也不一样,需要分段表述.教材反思(1)分段函数是刻画现实问题的重要模型,由自变量变化所遵循规律的不同决定的,函数的分段表示是建模的关键.(2)若求分段函数值域或最值时,应对分段函数中的每段函数分别求出值域或最值,然后再由各段函数的值域或最值确定本函数的值域或最值.分类讨论思想是本类问题的主要思想方法.跟踪训练2为了迎接世博会,某旅游区提倡低碳生活,在景区提供自行车出租.该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(日净收入=一日出租自行车的总收入-管理费用).(1)求函数y=f(x)的解析式及其定义域.(2)试问当每辆自行车的日租金定为多少元时,才能使日净收入最多?解析:(1)当x≤6时,y=50x-115,令50x-1150,解得x2.3.因为x∈N*,所以x≥3,所以3≤x≤6,x∈N*.当x6时,y=[50-3(x-6)]x-115.令[50-3(x-6)]x-1150,得3x2-68x+1150.解得2≤x≤20,又x∈N*,所以6x≤20,x∈N*,故y=50x-115,3≤x≤6,x∈N*,-3x2+68x-115,6x≤20,x∈N*,定义域为{x|3≤x≤20,x∈N*}.(2)对于y=50x-115(3≤x≤6,x∈N*),显然当x=6时,ymax=185,对于y=-3x2+68x-115=-3x-3432+8113(6x≤20,x∈N*).当x=11时,ymax=270,因为270185,所以当每辆自行车的日租金定为11元时,才能使日净收入最多.(1)利用函数关系建立各个取值范围内的净收入与日租金的关系式,写出分段函数,注意实际问题中自变量的取值范围.(2)利用一次函数的单调性及二次函数的性质分别求分段函数各段上的最大值,取其最大的即可.
本文标题:2019-2020学年新教材高中数学 第三章 函数的概念与性质 3.4 函数的应用(一)课件 新人教
链接地址:https://www.777doc.com/doc-8263878 .html