您好,欢迎访问三七文档
知识点一样本数据取值的方法为了探索一组数据的取值规律,一般先要用表格对数据进行整理,或者用图将数据直观表示出来.在初中,我们曾用_______________和____________来整理和表示这种数值型数据,由此能使我们清楚地知道数据分布在各个小组的个数.频数分布表频数分布图知识点二绘制频率分布直方图的步骤状元随笔表示频率分布的几种方法的优点与不足优点不足频率分布表表示数量较确切分析数据分布的总体态势不方便频率分布直方图表示数据分布情况非常直观原有的具体数据信息被抹掉了频率分布折线图能反映数据的变化趋势不能显示原有数据信息[教材解难]频率分布的性质①频率分布指的是样本数据在各个小范围内所占整体比例的情况.一般用频率分布直方图反映样本的频率分布.②频率分布表在数量表示上比较确切,但不够直观、形象,用它来分析数据分布的总体趋势不太方便,而频率分布直方图能够容易地表示大量数据,非常直观地表明分布的形状,使我们能够看到在分布表中看不清楚的数据模式.③在频率分布直方图中,由于长方形的面积S=组距×频率组距=频率,所以各个小长方形的面积表示相应各组的频率,各个小长方形的面积总和等于1.[基础自测]1.关于频率分布直方图中的有关数据,下列说法正确的是()A.直方图的高表示该组上的个体在样本中出现的频率与组距的比值B.直方图的高表示该组上的个体在样本中出现的频率C.直方图的高表示取某数的频率D.直方图的高表示该组上的个体数与组距的比值解析:直方图的高表示频率与组距的比值,直方图的面积为频率.答案:A2.已知样本10,8,10,8,6,13,11,10,12,7,9,8,12,9,11,12,9,10,11,10,那么频率为0.2的范围是()A.5.5~7.5B.7.5~9.5C.9.5~11.5D.11.5~13.5解析:共20个数据,频率为0.2,在此范围内的数据有4个,只有在11.5~13.5范围内有4个数据:13,12,12,12,故选D.答案:D3.一个容量为n的样本,分成若干组,已知某组的频数和频率分别为40,0.125,则n的值为()A.640B.320C.240D.160解析:依题意得40n=0.125,∴n=400.125=320.答案:B4.如图所示是一个容量为1000的样本频率分布直方图,请根据图形中的数据填空.(1)样本数据落在范围[5,9)的频率为________;(2)样本数据落在范围[9,13)的频数为________.解析:组距为4,(1)0.08×4=0.32,(2)1000×(0.09×4)=360.答案:(1)0.32(2)360题型一频率分布直方图、频率分布折线图的绘制[经典例题]例1美国历届总统中,就任时年龄最小的是罗斯福,他于1901年就任,当时年仅42岁;就任时年龄最大的是特朗普,他于2016年就任,当时70岁,下面按时间顺序(从1789年的华盛顿到2016年的特朗普,共45任)给出了历届美国总统就任时的年龄:57,61,57,57,58,57,61,54,68,51,49,64,50,48,65,52,56,46,54,49,51,47,55,55,54,42,51,56,55,51,54,51,60,62,43,55,56,61,52,69,64,46,54,47,70.(1)将数据进行适当的分组,并画出相应的频率分布直方图和频率分布折线图;(2)用自己的语言描述一下历届美国总统就任时年龄的分布情况.【解析】(1)以4为组距,列频率分布表如下:分组频数频率[42,46)20.0444[46,50)70.1555[50,54)80.1778[54,58)160.3556[58,62)50.1111[62,66)40.0889[66,70]30.0667合计451.000画出相应的频率分布直方图和频率分布折线图,如图所示.(2)从频率分布表中可以看出,将近60%的美国总统就任时的年龄在50岁至60岁之间,45岁及45岁以下和65岁以上就任的总统所占的比例相对较小.状元随笔方法归纳绘制频率分布直方图应注意的问题(1)在绘制出频率分布表后,画频率分布直方图的关键就是确定小矩形的高.一般地,频率分布直方图中两坐标轴上的单位长度是不一致的,合理的定高方法是“以一个恰当的单位长度”(没有统一规定),然后以各组的“频率组距”所占的比例来定高.如我们预先设定以“”为1单位长度,代表“0.1”,则若一个组的频率组距为0.2,则该小矩形的高就是“”(占两个单位长度),依此类推.(2)数据要合理分组,组距要选取恰当,一般尽量取整,数据为30~100个时,应分成5~12组,在频率分布直方图中,各个小长方形的面积等于各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和为1.跟踪训练1有一个容量为200的样本,数据的分组以及各组的频数如下:[-20,-15),7;[-15,-10),11;[-10,-5),15;[-5,0),40;[0,5),49;[5,10),41;[10,15),20;[15,20),17.(1)列出样本的频率分布表;(2)画出频率分布直方图和频率分布折线图;(3)求样本数据不足0的频率.解析:(1)频率分布表如下:分组频数频率[-20,-15)70.035[-15,-10)110.055[-10,-5)150.075[-5,0)400.2[0,5)490.245[5,10)410.205[10,15)200.1[15,20]170.085合计2001.00(2)频率分布直方图和频率分布折线图如图所示:(3)样本数据不足0的频率为:0.035+0.055+0.075+0.2=0.365.①求极差.②组距及组数.③分组.④列表.⑤画直方图.题型二频率分布直方图的应用[教材P198例1]例2已知某市2015年全年空气质量等级如表1所示.表1空气质量等级(空气质量指数(AQI))频数频率优(AQI≤50)8322.8%良(50AQI≤100)12133.2%轻度污染(100AQI≤150)6818.6%中度污染(150AQI≤200)4913.4%重度污染(200AQI≤300)308.2%严重污染(AQI300)143.8%合计365100%2016年5月和6月的空气质量指数如下:5月2408056539212645875660191625558565389901251241038189443453798162116886月63921101221021168116315876331026553385552769912712080108333573829014695选择合适的统计图描述数据,并回答下列问题:(1)分析该市2016年6月的空气质量情况.(2)比较该市2016年5月和6月的空气质量,哪个月的空气质量较好?(3)比较该市2016年6月与该市2015年全年的空气质量,2016年6月的空气质量是否好于去年?【解析】(1)根据该市2016年6月的空气质量指数和空气质量等级分级标准,可以画出该市这个月的不同空气质量等级的频数与频率分布表(表2).表2空气质量等级优良轻度污染中度污染重度污染严重污染合计天数415920030比例13.33%50%30%6.67%00100%从表中可以看出,“优”“良”的天数达19天,占了整月的63.33%,没有出现“重度污染”和“严重污染”.我们可以用条形图和扇形图对数据作出直观的描述,如图1和图2.从条形图中可以看出,在前三个等级的占绝大多数,空气质量等级为“良”的天数最多,后三个等级的天数很少,从扇形图中可以看出,空气质量为“良”的天数占了总天数的一半,大约有三分之二为“优”“良”,大多数是“良”和“轻度污染”.因此,整体上6月的空气质量不错.我们还可以用折线图展示空气质量指数随时间的变化情况,如图3.容易发现,6月的空气质量指数在100附近波动.(2)根据该市2016年5月的空气质量指数和空气质量分级标准,可以画出该市这个月的不同空气质量等级的频数和频率分布表(表3).表3空气质量等级优良轻度污染中度污染重度污染严重污染合计天数321511031频率10%68%16%3%3%0100%为了便于比较,我们选用复合条形图,将两组数据同时反映到一个条形图上.通过条形图中柱的高低,可以更直观地进行两个月的空气质量的比较(下图).由表3和图4可以发现,5月空气质量为“优”和“良”的总天数比6月多.所以,从整体上看,5月的空气质量略好于6月,但5月有重度污染,而6月没有.(3)把2016年6月和2015年全年的空气质量进行比较,由于一个月和一年的天数差别很大,所以直接通过频数比较没有意义,应该转化成频率分布进行比较.可以通过二者的空气质量指数的频率分布直方图或空气质量等级的频率分布条形图进行比较(图5).通过图5可以看出,虽然2016年6月的空气质量为“优”的频率略低于2015年,但“良”的频率明显高于2015年,而且2016年6月中度以上的污染天气频率明显小于2015年.所以从整体上看,2016年6月的空气质量要好于2015年全年的空气质量.教材反思频率分布直方图的意义(1)频率分布直方图以面积的形式反映了数据落在各组内频率大小.(2)在频率分布直方图中,各小矩形的面积之和等于1.(3)频数/相应的频率=样本容量.跟踪训练2从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图所示),由图中数据可知a=________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.解析:因为频率分布直方图中各小长方形的面积之和为1,所以10×(0.005+0.035+a+0.020+0.010)=1,解得a=0.030.由图可知身高在[120,150]内的学生人数为100×10×(0.030+0.020+0.010)=60,其中身高在[140,150]内的学生人数为10,所以从身高在[140,150]内的学生中选取的人数为1860×10=3.答案:0.0303状元随笔
本文标题:2019-2020学年新教材高中数学 第九章 统计 9.2.1 总体取值规律的估计课件 新人教A版必
链接地址:https://www.777doc.com/doc-8264070 .html