您好,欢迎访问三七文档
最新课程标准:理解不等式的概念,掌握不等式的性质.知识点一实数大小比较1.文字叙述如果a-b是____,那么ab;如果a-b________,那么a=b;如果a-b是____,那么ab,反之也成立.2.符号表示a-b0⇔a____b;a-b=0⇔a____b;a-b0⇔a____b.正数等于0负数=状元随笔比较两实数a,b的大小,只需确定它们的差a-b与0的大小关系,与差的具体数值无关.因此,比较两实数a,b的大小,其关键在于经过适当变形,能够确认差a-b的符号,变形的常用方法有配方、分解因式等.知识点二不等式的性质性质别名性质内容注意1对称性ab⇔____可逆2传递性ab,bc⇒____3可加性ab⇔____________可逆abc0⇒____4可乘性abc0⇒____c的符号5同向可加性abcd⇒____________同向baaca+cb+cacbcacbca+cb+d6同向同正可乘性ab0cd0⇒____同向7可乘方性ab0⇒____(n∈N,n≥2)同正8可开方ab0⇒________(n∈N,n≥2)同正acbdanbnnanb状元随笔(1)性质3是移项的依据.不等式中任何一项改变符号后,可以把它从一边移到另一边.即a+bc⇒ac-b.性质3是可逆性的,即ab⇔a+cb+c.(2)注意不等式的单向性和双向性.性质1和3是双向的,其余的在一般情况下是不可逆的.(3)在应用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.要克服“想当然”“显然成立”的思维定势.[基础自测]1.大桥桥头竖立的“限重40吨”的警示牌,是提示司机要安全通过该桥,应使车和货物的总质量T满足关系()A.T40B.T40C.T≤40D.T≥40解析:“限重40吨”是不超过40吨的意思.答案:C2.设M=x2,N=-x-1,则M与N的大小关系是()A.MNB.M=NC.MND.与x有关解析:因为M-N=x2+x+1=x+122+340,所以MN.答案:A3.已知xa0,则一定成立的不等式是()A.x2a20B.x2axa2C.x2ax0D.x2a2ax解析:因为xa0,不等号两边同时乘a,则axa2;不等号两边同时乘x,则x2ax,故x2axa2.答案:B4.不等式组2x+1012x-3≤0的解集为________.解析:x-12x≤6,∴-12x≤6.答案:-12,6题型一比较大小[教材P61例2]例1比较x2-x和x-2的大小.【解析】因为(x2-x)-(x-2)=x2-2x+2=(x-1)2+1,又因为(x-1)2≥0,所以(x-1)2+1≥10,从而(x2-x)-(x-2)0,因此x2-xx-2.状元随笔通过考察这两个多项式的差与0的大小关系,可以得出它们的大小关系.教材反思用作差法比较两个实数大小的四步曲跟踪训练1若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是()A.f(x)g(x)B.f(x)=g(x)C.f(x)g(x)D.随x值变化而变化解析:f(x)-g(x)=(3x2-x+1)-(2x2+x-1)=x2-2x+2=(x-1)2+10,所以f(x)g(x).故选C.答案:C作差→变形→判断差的符号→结合差的符号判定大小题型二不等式的性质[经典例题]例2对于实数a、b、c,有下列说法:①若ab,则acbc;②若ac2bc2,则ab;③若ab0,则a2abb2;④若cab0,则ac-abc-b;⑤若ab,1a1b,则a0,b0.其中正确的个数是()A.2B.3C.4D.5【解析】对于①,令c=0,则有ac=bc.①错.对于②,由ac2bc2,知c≠0,∴c20⇒ab.②对.对于③,由ab0,两边同乘以a得a2ab,两边同乘以b得abb2,∴a2abb2.③对.对于④,cab0⇒c-a0,c-b0ab⇒-a-b⇒c-ac-b⇒0c-ac-b⇒1c-a1c-b0ab0⇒ac-abc-b.④对.对于⑤,ab⇒a-b01a1b⇒b-aab0⇒ab0ab⇒a0,b0.⑤对.故选C.【答案】C分析条件→利用不等式性质逐一判断方法归纳(1)首先要注意不等式成立的条件,不要弱化条件,尤其是不凭想当然随意捏造性质.(2)解决有关不等式选择题时,也可采用特值法进行排除,注意取值一定要遵循以下原则:一是满足题设条件;二是取值要简单,便于验证计算.跟踪训练2(1)已知ab,那么下列式子中,错误的是()A.4a4bB.-4a-4bC.a+4b+4D.a-4b-4(2)对于任意实数a,b,c,d,下列命题中正确的是()A.若ab,c≠0,则acbcB.若ab,则ac2bc2C.若ac2bc2,则abD.若ab,则1a1b解析:(1)根据不等式的性质,ab,40⇒4a4b,A项正确;ab,-40⇒-4a-4b,B项错误;ab⇒a+4b+4,C项正确;ab⇒a-4b-4,D项正确.(2)对于选项A,当c0时,不正确;对于选项B,当c=0时,不正确;对于选项C,∵ac2bc2,∴c≠0,∴c20,∴一定有ab.故选项C正确;对于选项D,当a0,b0时,不正确.答案:(1)B(2)C利用不等式的性质,解题关键找准使不等式成立的条件.题型三利用不等式性质求范围[经典例题]例3已知-2a≤3,1≤b2,试求下列代数式的取值范围:(1)|a|;(2)a+b;(3)a-b;(4)2a-3b.【解析】(1)|a|∈[0,3];(2)-1a+b5;(3)依题意得-2a≤3,-2-b≤-1,相加得-4a-b≤2;(4)由-2a≤3得-42a≤6,①由1≤b2得-6-3b≤-3,②由①②得,-102a-3b≤3.状元随笔运用不等式性质研究代数式的取值范围,关键是把握不等号的方向.方法归纳利用不等式性质求范围的一般思路(1)借助性质,转化为同向不等式相加进行解答;(2)借助所给条件整体使用,切不可随意拆分所给条件;(3)结合不等式的传递性进行求解.跟踪训练3已知实数x,y满足:1x2y3,(1)求xy的取值范围;(2)求x-2y的取值范围.解析:(1)∵1x2y3,∴1x2,2y3,则2xy6,则xy的取值范围是(2,6).(2)由(1)知1x2,2y3,从而-6-2y-4,则-5x-2y-2,即x-2y的取值范围是(-5,-2).状元随笔(1)根据不等式的性质6可直接求解;(2)求出-2y的取值范围后,利用不等式的性质5即可求x-2y的取值范围.
本文标题:2019-2020学年新教材高中数学 第二章 等式与不等式 2.2.1 不等式及其性质课件 新人教B
链接地址:https://www.777doc.com/doc-8264128 .html