您好,欢迎访问三七文档
知识导图学法指导1.线面垂直、面面垂直的性质定理揭示了“平行”与“垂直”之间的内在联系,提供了它们之间相互转化的依据.因此,在应用时要善于运用转化的思想.2.利用面面垂直的性质定理时,找准两平面的交线是解题的关键.3.学习线面垂直的性质定理时,要注意区分与其相似的几个结论.高考导航1.直线与平面垂直的性质定理较少单独考查,常与平行关系及面面垂直关系综合,以解答题的形式出现,分值5~7分.2.平面与平面垂直的性质定理常与推理、计算结合,考查空间想象能力和逻辑推理能力,以选择题或解答题的其中一问的形式出现,分值5~7分.知识点一直线与平面垂直的性质文字语言垂直于同一个平面的两条直线____符号语言a⊥αb⊥α⇒____图形语言作用①线面垂直⇒线线平行;②作平行线平行a∥b1.直线与平面垂直的性质定理给出了判定两条直线平行的另一种方法.2.定理揭示了空间中“平行”与“垂直”关系的内在联系,提供了“垂直”与“平行”关系转化的依据.知识点二平面与平面垂直的性质文字语言两个平面垂直,则____________垂直于____的直线与另一个平面____符号语言α⊥βα∩β=l________⇒a⊥β图形语言作用①面面垂直⇒____垂直;②作面的垂线一个平面内交线垂直a⊂αa⊥l线面对面面垂直的性质定理的理解1.定理的实质是由面面垂直得线面垂直,故可用来证明线面垂直.2.已知面面垂直时,可以利用此定理转化为线面垂直,再转化为线线垂直.[小试身手]1.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m⊥β的是()A.α⊥β,且m⊂αB.m∥n,且n⊥βC.α⊥β,且m∥αD.m⊥n,且n∥β解析:m∥nn⊥β⇒m⊥β,故选B.答案:B2.已知△ABC和两条不同的直线l,m,l⊥AB,l⊥AC,m⊥AC,m⊥BC,则直线l,m的位置关系是()A.平行B.异面C.相交D.垂直解析:因为直线l⊥AB,l⊥AC,所以直线l⊥平面ABC,同理直线m⊥平面ABC,根据线面垂直的性质定理得l∥m.答案:A3.如图,BC是Rt△BAC的斜边,PA⊥平面ABC,PD⊥BC于点D,则图中直角三角形的个数是()A.3B.5C.6D.8解析:由PA⊥平面ABC,知△PAC,△PAD,△PAB均为直角三角形,又PD⊥BC,PA⊥BC,PA∩PD=P,∴BC⊥平面PAD.∴AD⊥BC,易知△ADC,△ADB,△PDC,△PDB均为直角三角形.又△BAC为直角三角形,所以共有8个直角三角形,故选D.答案:D4.如果三棱锥的三个侧面两两相互垂直,则顶点在底面的正投影是底面三角形的________心.解析:三棱锥的三个侧面两两相互垂直,则三条交线两两互相垂直,易证投影是底面三角形的垂心.答案:垂类型一线面垂直的性质定理的应用例1在正方体ABCD-A1B1C1D1中,点E,F分别在A1D,AC上,EF⊥A1D,EF⊥AC,求证:EF∥BD1.【证明】如图所示,连接A1C1,C1D,B1D1,BD.∵AC∥A1C1,EF⊥AC,∴EF⊥A1C1.又EF⊥A1D,A1D∩A1C1=A1,∴EF⊥平面A1C1D①.∵BB1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,∴BB1⊥A1C1.∵四边形A1B1C1D1为正方形,∴A1C1⊥B1D1,又B1D1∩BB1=B1,∴A1C1⊥平面BB1D1D,而BD1⊂平面BB1D1D,∴A1C1⊥BD1.同理DC1⊥BD1.又DC1∩A1C1=C1,∴BD1⊥平面A1C1D②.由①②可知EF∥BD1.方法归纳线面垂直的性质定理是证明两直线平行的重要依据,证明两直线平行的常用方法:(1)a∥b,b∥c⇒a∥c.(2)a∥α,a⊂β,β∩α=b⇒a∥b.(3)α∥β,γ∩α=a,γ∩β=b⇒a∥b.(4)a⊥α,b⊥α⇒a∥b.跟踪训练1如图,在△ABC中,AB=AC,E为BC的中点,AD⊥平面ABC,D为FG的中点,且AF=AG,EF=EG.求证:BC∥FG.证明:连接DE,AE,因为AD⊥平面ABC,所以AD⊥BC.因为AB=AC,E为BC的中点,所以AE⊥BC,又AD∩AE=A,所以BC⊥平面ADE.因为AF=AG,D为FG的中点,所以AD⊥FG,同理ED⊥FG,又ED∩AD=D,所以FG⊥平面ADE,所以BC∥FG.线面垂直的性质定理、公理4及线面平行的性质定理都是证明线线平行的依据,至于线面平行、面面平行,归结到最后还是要先证明线线平行.类型二面面垂直的性质定理的应用例2如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=2,CE=EF=1,求证:CF⊥平面BDE.【证明】如图,设AC∩BD=G,连接EG,FG.由AB=2易知CG=1,则EF=CG=CE.又EF∥CG,所以四边形CEFG为菱形,所以CF⊥EG.因为四边形ABCD为正方形,所以BD⊥AC.又平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF,CF⊂平面ACEF,所以BD⊥CF.又BD∩EG=G,所以CF⊥平面BDE.方法归纳(1)两个平面垂直的性质定理可作为判定线面垂直的依据.当已知两个平面垂直时,可在一个平面内作交线的垂线,即是另一平面的垂线.(2)证明线面垂直的常用方法:①线面垂直的判定定理;②面面垂直的性质定理;③a∥b,b⊥α⇒a⊥α.跟踪训练2在三棱锥P-ABC中,PA⊥平面ABC,平面PAB⊥平面PBC.求证:BC⊥AB.证明:如图所示,在平面PAB内作AD⊥PB于点D.∵平面PAB⊥平面PBC,且平面PAB∩平面PBC=PB,∴AD⊥平面PBC.又BC⊂平面PBC,∴AD⊥BC.∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC.∵PA∩AD=A,∴BC⊥平面PAB.又AB⊂平面PAB,∴BC⊥AB.类型三垂直关系的综合应用例3如图,在几何体ABCDPE中,底面ABCD是边长为4的正方形,PA⊥平面ABCD,PA∥EB,且PA=2EB=42.(1)证明:BD∥平面PEC;(2)若G为BC上的动点,求证:AE⊥PG.【证明】(1)如图,连接AC交BD于点O,取PC的中点F,连接OF,EF.∵四边形ABCD为正方形,∴O为AC的中点,∴OF∥PA,且OF=12PA.∵EB∥PA,且EB=12PA,∴EB∥OF,且EB=OF,∴四边形EBOF为平行四边形,∴EF∥BD.又EF⊂平面PEC,BD⊄平面PEC,∴BD∥平面PEC.(2)如图,连接PB,∵EBAB=BAPA=12,∠EBA=∠BAP=90°,∴△EBA∽△BAP,∴∠PBA=∠BEA,∴∠PBA+∠BAE=∠BEA+∠BAE=90°,∴PB⊥AE.∵PA⊥平面ABCD,PA⊂平面APEB,∴平面ABCD⊥平面APEB.∵BC⊥AB,平面ABCD∩平面APEB=AB,BC⊂平面ABCD,∴BC⊥平面APEB,∴BC⊥AE.又BC∩PB=B,BC⊂平面PBC,PB⊂平面PBC,∴AE⊥平面PBC.∵G为BC上的动点,∴PG⊂平面PBC,∴AE⊥PG.(1)利用长度关系构造平行四边形,证出线线平行,进而得线面平行.(2)利用垂直关系的相互转化证明线线垂直.方法归纳空间线线垂直、线面垂直、面面垂直是重点考查的位置关系,证明时一般是已知垂直关系考虑性质定理,求证垂直关系考虑判定定理.跟踪训练3如图,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC=2.等边三角形ADB以AB为轴转动.(1)当平面ADB⊥平面ABC时,求CD;(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.解析:(1)如图所示,取AB的中点E,连接DE,CE.因为△ADB是等边三角形,所以DE⊥AB.当平面ADB⊥平面ABC时,因为平面ADB∩平面ABC=AB,所以DE⊥平面ABC,CE⊂平面ABC可知DE⊥CE.由已知可得DE=3,EC=1.在Rt△DEC中,CD=DE2+EC2=2.(2)当△ADB以AB为轴转动时,总有AB⊥CD.证明:①当D在平面ABC内时,因为AC=BC,AD=BD,所以C,D都在线段AB的垂直平分线上,即AB⊥CD.②当D不在平面ABC内时,由(1)知AB⊥DE.又因AC=BC,所以AB⊥CE.又DE∩CE=E,所以AB⊥平面CDE.又CD⊂平面CDE,得AB⊥CD.综上所述,总有AB⊥CD.(1)由面面垂直的性质得线面垂直,再求CD的长.(2)当△ADB转动时,分D在平面ABC内和外2类.
本文标题:2019-2020学年高中数学 第二章 点、直线、平面之间的位置关系 2.3.3 直线与平面垂直的性
链接地址:https://www.777doc.com/doc-8289462 .html