您好,欢迎访问三七文档
第2章圆锥曲线与方程章末复习课圆锥曲线的定义及应用【例1】(1)已知动点M的坐标满足方程5x2+y2=|3x+4y-12|,则动点M的轨迹是()A.椭圆B.双曲线C.抛物线D.以上都不对(2)在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为22.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为________.(1)C(2)x216+y28=1[(1)把轨迹方程5x2+y2=|3x+4y-12|写成x2+y2=|3x+4y-12|5.∴动点M到原点的距离与它到直线3x+4y-12=0的距离相等.∴点M的轨迹是以原点为焦点,直线3x+4y-12=0为准线的抛物线.(2)设椭圆方程为x2a2+y2b2=1(a>b>0),因为AB过F1且A,B在椭圆上,如图所示,则△ABF2的周长为|AB|+|AF2|+|BF2|=|AF1|+|AF2|+|BF1|+|BF2|=4a=16,∴a=4.又离心率e=ca=22,∴c=22,∴b2=a2-c2=8,∴椭圆C的方程为x216+y28=1.]“回归定义”解题的三点应用应用一:在求轨迹方程时,若所求轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的定义,写出所求的轨迹方程;应用二:涉及椭圆、双曲线上的点与两个定点构成的三角形问题时,常用定义结合解三角形的知识来解决;应用三:在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形,利用几何意义去解决.提醒:应用定义解题时注意圆锥曲线定义中的限制条件.1.点P是抛物线y2=8x上的任意一点,F是抛物线的焦点,点M的坐标是(2,3),求|PM|+|PF|的最小值,并求出此时点P的坐标.[解]抛物线y2=8x的准线方程是x=-2,那么点P到焦点F的距离等于它到准线x=-2的距离,过点P作PD垂直于准线x=-2,垂足为D,那么|PM|+|PF|=|PM|+|PD|.如图所示,根据平面几何知识,当M,P,D三点共线时,|PM|+|PF|的值最小,且最小值为|MD|=2-(-2)=4,所以|PM|+|PF|的最小值是4.此时点P的纵坐标为3,所以其横坐标为98,即点P的坐标是98,3.圆锥曲线的方程【例2】(1)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于12,则C的方程是()A.x23+y24=1B.x24+y23=1C.x24+y22=1D.x24+y23=1(2)已知抛物线y2=8x的准线过双曲线x2a2-y2b2=1(a0,b0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________.(1)D(2)x2-y23=1[(1)由题意得c=1ca=12,解得a=2c=1,则b2=a2-c2=3,故椭圆方程为x24+y23=1.(2)由题意得c=2ca=2,解得a=1c=2,则b2=c2-a2=3,因此双曲线方程为x2-y23=1.]求圆锥曲线方程的一般步骤一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤.(1)定形——指的是二次曲线的焦点位置与对称轴的位置.(2)定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m0,n0).(3)定量——由题设中的条件找到“式”中待定系数的等量关系,通过解方程得到量的大小.C[由题意知2p=8,故选C.]2.(1)以x轴为对称轴,通径长为8,顶点为坐标原点的抛物线方程是()A.y2=8xB.y2=-8xC.y2=8x或y2=-8xD.x2=8y或x2=-8yA[依题意,得a=2,a+c=3,故c=1,b=22-12=3,故所求椭圆的标准方程是x24+y23=1.](2)焦点在x轴上,右焦点到短轴端点的距离为2,到左顶点的距离为3的椭圆的标准方程是()A.x24+y23=1B.x24+y2=1C.y24+x23=1D.x2+y24=1圆锥曲线的几何性质【例3】(1)如图所示,F1,F2是椭圆C1:x24+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是()A.2B.3C.32D.62(2)已知ab0,椭圆C1的方程为x2a2+y2b2=1,双曲线C2的方程为x2a2-y2b2=1,C1与C2的离心率之积为32,则C2的渐近线方程为_______.[思路探究](1)由椭圆可求出|AF1|+|AF2|,由矩形求出|AF1|2+|AF2|2,再求出|AF2|-|AF1|即可求出双曲线方程中的a,进而求得双曲线的离心率.(2)根据离心率的关系列出关于a,b的方程,求出ba,再求渐近线方程.(1)D(2)x±2y=0[(1)由椭圆可知|AF1|+|AF2|=4,|F1F2|=23.因为四边形AF1BF2为矩形,所以|AF1|2+|AF2|2=|F1F2|2=12,所以2|AF1||AF2|=(|AF1|+|AF2|)2-(|AF1|2+|AF2|2)=16-12=4,所以(|AF2|-|AF1|)2=|AF1|2+|AF2|2-2|AF1|·|AF2|=12-4=8,所以|AF2|-|AF1|=22,因此对于双曲线有a=2,c=3,所以C2的离心率e=ca=62.(2)设椭圆C1和双曲线C2的离心率分别为e1和e2,则e1=a2-b2a,e2=a2+b2a.因为e1·e2=32,所以a4-b4a2=32,即ba4=14,所以ba=22.故双曲线的渐近线方程为y=±bax=±22x,即x±2y=0.]求解离心率的三种方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x轴上还是y轴上都有关系式a2-b2=c2(a2+b2=c2)以及e=ca,已知其中的任意两个参数,可以求其他的参数,这是基本且常用的方法.(2)方程法:建立参数a与c之间的齐次关系式,从而求出其离心率,这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.3.已知椭圆x2a2+y2b2=1(a>b>0)的半焦距是c,A,B分别是长轴、短轴的一个端点,O为原点,若△ABO的面积是3c2,则这一椭圆的离心率是()A.12B.32C.22D.33A[12ab=3c2,即a2(a2-c2)=12c4,所以(a2+3c2)(a2-4c2)=0,所以a2=4c2,a=2c,故e=ca=12.]直线与圆锥曲线的位置关系【例4】已知椭圆x2a2+y2b2=1(ab0)经过点(0,3),离心率为12,左、右焦点分别为F1(-c,0),F2(c,0).(1)求椭圆的方程;(2)若直线l:y=-12x+m与椭圆交于A,B两点,与以F1F2为直径的圆交于C,D两点,且满足|AB||CD|=534,求直线l的方程.[思路探究](1)利用定义解题.(2)利用勾股定理和弦长公式来解.[解](1)由题设知b=3,ca=12,b2=a2-c2,解得a=2,b=3,c=1,∴椭圆的方程为x24+y23=1.(2)由(1)知,以F1F2为直径的圆的方程为x2+y2=1,∴圆心到直线l的距离d=2|m|5,由d1得|m|52.(*)∴|CD|=21-d2=21-45m2=255-4m2.设A(x1,y1),B(x2,y2),由y=-12x+m,x24+y23=1,得x2-mx+m2-3=0,由根与系数的关系可得x1+x2=m,x1x2=m2-3.∴|AB|=1+-122[m2-4m2-3]=1524-m2.由|AB||CD|=534,得4-m25-4m2=1,解得m=±33,满足(*).∴直线l的方程为y=-12x+33或y=-12x-33.直线与圆锥曲线的三种位置关系将直线方程与圆锥曲线方程联立,化简后得到关于x(或y)的一元二次方程,则直线与圆锥曲线的位置关系有三种情况:1.相交:Δ0⇔直线与椭圆相交;Δ0⇒直线与双曲线相交,但直线与双曲线相交不一定有Δ0,如当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故Δ0是直线与双曲线相交的充分不必要条件;Δ0⇒直线与抛物线相交,但直线与抛物线相交不一定有Δ0,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故Δ0也仅是直线与抛物线相交的充分条件,而不是必要条件.2.相切:Δ=0⇔直线与椭圆相切;Δ=0⇔直线与双曲线相切;Δ=0⇔直线与抛物线相切.3.相离:Δ0⇔直线与椭圆相离;Δ0⇔直线与双曲线相离;Δ0⇔直线与抛物线相离.4.已知椭圆E:x2a2+y2b2=1(a>b>0),其焦点为F1,F2,离心率为22,直线l:x+2y-2=0与x轴,y轴分别交于点A,B.(1)若点A是椭圆E的一个顶点,求椭圆的方程;(2)若线段AB上存在点P满足|PF1|+|PF2|=2a,求a的取值范围.[解](1)由椭圆的离心率为22,得a=2c,由A(2,0),得a=2,∴c=2,b=2,∴椭圆方程为x24+y22=1.(2)由e=22,设椭圆方程为x2a2+2y2a2=1,联立x2a2+2y2a2=1,x+2y-2=0,得6y2-8y+4-a2=0,若线段AB上存在点P满足|PF1|+|PF2|=2a,则线段AB与椭圆E有公共点,等价于方程6y2-8y+4-a2=0在y∈[0,1]上有解.设f(y)=6y2-8y+4-a2,∴Δ≥0,f0≥0,即a2≥43,4-a2≥0,∴43≤a2≤4,故a的取值范围是233≤a≤2.
本文标题:2019-2020学年高中数学 第2章 圆锥曲线与方程章末复习课课件 苏教版选修2-1
链接地址:https://www.777doc.com/doc-8290350 .html