您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2019-2020学年高中数学 第2章 统计章末复习课课件 新人教B版必修3
第二章统计章末复习课体系构建题型探究抽样方法及应用【例1】(1)利用简单随机抽样,从n个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为()A.14B.13C.514D.1027(2)假设要检查某企业生产的袋装牛奶的质量是否达标,现从500袋牛奶中抽取60袋进行检验,利用随机数表法抽取样本时,先将500袋牛奶按000,001,…,499进行编号,使用随机数表中各个5位数组的后3位,选定第7行第5组数开始,取出047作为抽取的代号(从左向右读取数字),随后抽到的5袋牛奶的号码分别是(下面摘取了某随机数表第7行至第9行)________.844217533157245506887704744767217633502583921206766301647859169555671998105071851286735807443952387933211(1)C(2)025,016,105,185,395[(1)根据题意,9n-1=13,解得n=28.故在整个抽样过程中每个个体被抽到的概率为1028=514.(2)由已知读取号码的初始值为第7行第5组数中的后3位,第一个号码为047.凡不在000~499中的数跳过去不取,前面已经取过的也跳过去不取,从而随后抽到的5袋牛奶的编号为025,016,105,185,395.]随机抽样有简单随机抽样和分层抽样两种.其共同点是在抽样过程中每个个体被抽到的机会相等,当总体中的个体数较少时,常采用简单随机抽样;当已知总体由差异明显的几部分组成时,常采用分层抽样.其中简单随机抽样是最简单、最基本的抽样方法.分层抽样时都要用到简单随机抽样.应用各种抽样方法抽样时要注意以下问题:1利用抽签法时要注意把号签放在不透明的容器中且搅拌均匀;2利用随机数表法时注意编号位数要一致;3在分层抽样中,若在某一层抽到的个体数不是整数,应在该层剔除部分个体,使抽取个体数为整数.1.某品牌白酒公司在甲、乙、丙三个地区分别有30个、120个、180个代理商.公司为了调查白酒销售的情况,需从这330个代理商中抽取一个容量为11的样本,记这项调查为①;在甲地区有10个特大型超市代理销售该品牌的白酒,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①②这两项调查宜采用的抽样方法依次是________.分层抽样,简单随机抽样[由于甲、乙、丙三个地区有明显差异,所以在完成①时,需用分层抽样.在甲地区有10个特大型超市代理销售该品牌的白酒,没有显著差异,所以完成②宜采用简单随机抽样.]用样本的频率分布估计总体分布【例2】如下表所示给出了某校500名12岁男孩中用随机抽样得出的120人的身高资料.(单位:cm)(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计身高低于134cm的人数占总人数的百分比.[思路探究](1)根据频数计算出频率.分“分组”“频数”“频率”三列,列出频率分布表.(2)根据频率分布表画出频率分布直方图.(3)根据频率分布表计算出身高低于134cm的频率.[解](1)样本的频率分布表:分组频数频率[122,126)50.04[126,130)80.07[130,134)100.08[134,138)220.18[138,142)330.28[142,146)200.17[146,150)110.09[150,154)60.05[154,158]50.04合计1201.00(2)画出频率分布直方图,如下图所示:(3)因为样本中身高低于134cm的人数的频率为5+8+10120=23120≈0.19,所以估计身高低于134cm的人数约占总人数的19%.总体分布中相应的统计图表主要包括:频率分布表、频率分布直方图、频率分布折线图等.通过这些统计图表给出的相应统计信息可以估计总体.2.为了了解某校高一学生的视力情况,随机地抽查了该校100名高一学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道后5组频数和为62,视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()A.64B.54C.48D.27B[[4.7,4.8)之间频率为0.32,[4.6,4.7)之间频率为1-(0.62+0.05+0.11)=1-0.78=0.22,∴a=(0.22+0.32)×100=54.]用样本的数字特征估计总体的数字特征【例3】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)估计居民月均用水量的中位数.[解](1)由频率分布直方图,可知,月均用水量在[0,0.5)的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a,解得a=0.30.(2)由(1)可知,100位居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率,可以估计全市30万居民中月均用水量不低于3吨的人数为300000×0.12=36000.(3)设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.730.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.480.5,所以2≤x2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.样本的数字特征可分为两大类:一类是反映样本数据集中趋势的,包括平均数、众数、中位数;另一类是反映样本数据的波动大小,包括样本方差及标准差.通常,在实际问题中,仅靠平均数不能完全反映问题,还要研究方差,方差描述了数据相对平均数的离散程度,在平均数相同的情况下,方差越大,离散程度越大,数据波动性越大,稳定性越差;方差越小,数据越集中,质量越稳定.3.甲、乙两人数学成绩的茎叶图如图所示:(1)求出这两名同学的数学成绩的平均数、标准差;(2)比较两名同学的成绩,谈谈你的看法.[解]x甲=110(65+70+80+86+89+95+91+94+107+113)=89.s2甲=110[(65-89)2+(70-89)2+(80-89)2+(86-89)2+(89-89)2+(95-89)2+(91-89)2+(94-89)2+(107-89)2+(113-89)2]=199.2,∴s甲≈14.1.x乙=110(79+86+83+88+93+99+98+98+102+114)=94.s2乙=110[(79-94)2+(86-94)2+(83-94)2+(88-94)2+(93-94)2+(99-94)2+(98-94)2+(98-94)2+(102-94)2+(114-94)2]=96.8.∴s乙≈9.8.∴x甲<x乙且s甲>s乙.∴乙同学的平均成绩较高且标准差较小;说明乙同学比甲同学的成绩扎实,稳定.用回归直线方程对总体进行估计【例4】下表数据是退水温度x(℃)对黄酮延长性y(%)效应的试验结果,y是以延长性计算的,且对于给定的x,y为正态变量,其方差与x无关.x(℃)300400500600700800y(%)405055606770(1)画出散点图;(2)指出x,y是否线性相关;(3)若线性相关,求y关于x的回归方程;(4)估计退水温度是1000℃时,黄酮延长性的情况.[思路探究]先画出散点图,确定y与x之间是否线性相关,再根据求回归直线方程的步骤求出回归直线方程,最后根据回归方程确定黄酮延长性的情况.[解](1)散点图如图:(2)由散点图可以看出样本点分布在一条直线的附近,可见y与x线性相关.(3)列出下表并用科学计算器进行有关计算.i123456xi300400500600700800yi405055606770xiyi120002000027500360004690056000x2i90000160000250000360000490000640000于是可得因此所求的回归直线的方程为:y^=0.05886x+24.627.(4)将x=1000代入回归方程得y^=0.05886×1000+24.627=83.487,即退水温度是1000℃时,黄酮延长性大约是83.487%.分析两个变量的相关关系时,可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘法求出回归方程.从散点图上,我们可以分析出两个变量是否存在相关关系.如果这些点大致分布在通过散点图中心的一条直线附近,那么就说这两个变量之间具有线性相关关系,这条直线叫做回归直线,直线的方程叫做回归方程.,求回归方程的步骤:1先把数据制成表,从表中计算出2计算回归系数3写出回归方程4.有人收集了2016年春节期间平均气温x与某取暖商品销售额y的有关数据如下表:平均气温(℃)-2-3-5-6销售额(万元)20232730根据以上数据,用线性回归的方法,求得销售额y与平均气温x之间的线性回归方程y^=bx+a的系数b^=-2.4,则预测平均气温为-8℃时该商品的销售额为()A.34.6万元B.35.6万元C.36.6万元D.37.6万元A[x=-2+-3+-5+-64=-4,y=20+23+27+304=25,所以25=(-2.4)×(-4)+a.所以a^=15.4.所以回归直线方程为y^=-2.4x+15.4.当x=-8时,y=34.6,即预测平均气温为-8℃时,该商品的销售额为34.6万元.故选A.]
本文标题:2019-2020学年高中数学 第2章 统计章末复习课课件 新人教B版必修3
链接地址:https://www.777doc.com/doc-8290690 .html