您好,欢迎访问三七文档
第二章统计2.1随机抽样2.1.3分层抽样学习目标核心素养1.记住分层抽样的特点和步骤(重点)2.会用分层抽样从总体中抽取样本.(重点、难点)3.给定实际抽样问题会选择合适的抽样方法进行抽样.(易错易混点)1.通过分层抽样的学习,培养数学运算素养.2.借助多种抽样方法的选择,提升逻辑推理素养.自主预习探新知1.分层抽样一般地,在抽样时,将总体分成________的层,然后按照__________,从__________抽取一定数量的个体,将____取出的个体合在一起作为样本,这种抽样的方法是一种分层抽样.当总体是由________的几部分组成时,往往选用分层抽样的方法.互不交叉一定的比例各层独立地各层差异明显2.分层抽样的实施步骤第一步,按某种特征将总体分成若干部分(层).第二步,计算抽样比.抽样比=样本容量总体容量.第三步,各层抽取的个体数=______________________.第四步,依各层抽取的个体数,按____________从各层抽取样本.第五步,综合每层抽样,组成样本.各层总的个体数×抽样比简单随机抽样思考:什么情况下适用分层抽样?[提示]当总体中个体之间差异较大时可使用分层抽样.1.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,且男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样C[依据题意,了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,且男女生视力情况差异不大,故要了解该地区学生的视力情况,应按学段分层抽样.]2.为了保证分层抽样时每个个体被等可能地抽取,必须要求()A.每层等可能抽取B.每层抽取的个体数相等C.按每层所含个体在总体中所占的比例抽样D.只要抽取的样本容量一定,每层抽取的个体数没有限制C[分层抽样为等比例抽样.]3.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是()A.8,8B.10,6C.9,7D.12,4C[抽样比1654+42=16,则一班被抽取人数为54×16=9人,二班被抽取人数为42×16=7人.]4.在抽样过程中,每次抽取的个体不再放回总体的为不放回抽样,那么分层抽样、系统抽样、简单随机抽样三种抽样中,为不放回抽样的有________个.三[三种抽样方法均为不放回抽样.]合作探究提素养分层抽样的概念【例1】下列问题中,最适合用分层抽样抽取样本的是()A.从10名同学中抽取3人参加座谈会B.某社区有500个家庭,其中高收入的家庭125个,中等收入的家庭280个,低收入的家庭95个,为了了解生活购买力的某项指标,要从中抽取一个容量为100的样本C.从1000名工人中,抽取100名调查上班途中所用时间D.从生产流水线上,抽取样本检查产品质量B[A中总体个体无明显差异且个数较少,适合用简单随机抽样;C中,D中总体个体无明显差异且个数较多,适合用系统抽样;B中总体个体差异明显,适合用分层抽样.]分层抽样的特点(1)适用于总体由差异明显的几部分组成的情况.(2)样本能更充分地反映总体的情况.(3)等可能抽样,每个个体被抽到的可能性都相等.1.某校有在校高中生共1600人,其中高一学生520人,高二学生500人,高三学生580人.如果想通过抽查其中的80人来调查学生的消费情况,考虑到学生的年级高低消费情况有明显差别,而同一年级内消费情况差异较小,问:应采用怎样的抽样方法?高三学生中应抽查多少人?[解]因为不同年级的学生消费情况有明显差别,所以应采用分层抽样.因为520∶500∶580=26∶25∶29.所以将80分成26∶25∶29的三部分.设三部分各抽取的个体数分别为26x,25x,29x,由26x+25x+29x=80得x=1,所以高三学生中应抽查29人.分层抽样的设计及应用[探究问题]1.怎样确定分层抽样中各层入样的个体数?[提示]在实际操作时,应先计算出抽样比=样本容量总体容量,获得各层入样数的百分比,再按抽样比确定每层需要抽取的个体数:抽样比×该层个体数目=样本容量总体容量×该层个体数目.2.计算各层所抽个体的个数时,如果算出的个数值不是整数怎么办?[提示]可四舍五入取整,也可先将该层等可能地剔除多余个体.3.分层抽样公平吗?[提示]分层抽样中,每个个体被抽到的可能性是相同的,与层数、分层无关.如果总体的个数为N,样本容量为n,Ni为第i层的个体数,则第i层抽取的个体数ni=n·NiN,每个个体被抽到的可能性是niNi=1Ni·n·NiN=nN.【例2】某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革的意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施操作.思路点拨:观察特征→确定抽样方法→求出比例→确定各层样本数→从各层中抽样→样本[解]∵机构改革关系到每个人的不同利益,故采用分层抽样方法较妥.∵10020=5,∴105=2,705=14,205=4.∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.因副处级以上干部与工人数都较少,他们分别按1~10编号和1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人进行00,01,…,69编号,然后用随机数表法抽取14人.这样便得到了一个容量为20的样本.1.(变条件)某大型工厂有管理人员1200人,销售人员2000人,车间工人6000人,若要了解改革意见,从全厂人员中抽取一个容量为46的样本,试确定用何种方法抽取,请具体实施操作.[解]改革关系到每个人的利益,采用分层抽样较好.抽样比:461200+2000+6000=1200.∵1200×1200=6(人),2000×1200=10(人),6000×1200=30(人).∴从管理人员中抽取6人,从销售人员中抽取10人,从车间工人中抽取30人.因为各层中个体数目均较多,可以采用系统抽样的方法获得样本.2.(变结论)在本例中的抽样方法公平合理吗?请说明理由.[解]从100人中抽取20人,总体中每一个个体的入样可能性都是20100=15,即抽样比,按此比例在各层中抽取个体;副处级以上干部抽取10×15=2人,一般干部抽70×15=14人,工人抽20×15=4人,以保证每一层中每个个体的入样可能性相同,均为15,故这种抽样是公平合理的.分层抽样的步骤抽样方法的选择【例3】①教育局督学组到校检查工作,临时需在每班各抽调两人参加座谈;②某班数学期中考试有14人在120分以上,35人在90~119分,7人不及格,现从中抽出8人研讨进一步改进教与学;③某班春节聚会,要产生两位“幸运者”.就这三件事,合适的抽样方法分别为()A.分层抽样,分层抽样,简单随机抽样B.系统抽样,系统抽样,简单随机抽样C.分层抽样,简单随机抽样,简单随机抽样D.系统抽样,分层抽样,简单随机抽样思路点拨:根据各抽样方法的特征、适用范围判断.D[①每班各抽两人需用系统抽样.②由于学生分成了差异比较大的几层,应用分层抽样.③由于总体与样本容量较小,应用简单随机抽样.故选D.]抽样方法的选取(1)若总体由差异明显的几个层次组成,则选用分层抽样;(2)若总体没有差异明显的层次,则考虑采用简单随机抽样或系统抽样.当总体容量较小时宜用抽签法;当总体容量较大,样本容量较小时宜用随机数表法;当总体容量较大,样本容量也较大时宜用系统抽样;2.为了解某地区的“微信健步走”活动情况,拟从该地区的人群中抽取部分人员进行调查.事先已了解到该地区老、中、青三个年龄段人员的“微信健步走”活动情况有较大差异,而男女“微信健步走”活动情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按年龄分层抽样D.系统抽样C[因为不同年龄段人员的“微信健步走”活动情况有较大差异.而男女对此活动差异不大,所以按年龄段分层抽样最合理.]1.对于分层抽样中的比值问题,常利用以下关系式[解](1)样本容量n总体容量N=各层抽取的样本数该层的容量;(2)总体中各层容量之比=对应层抽取的样本数之比.2.选择抽样方法的规律(1)当总体容量较小,样本容量也较小时,制签简单,号签容易搅匀,可采用抽签法.(2)当总体容量较大,样本容量较小时,可采用随机数法.(3)当总体容量较大,样本容量也较大时,可采用系统抽样法.(4)当总体是由差异明显的几部分组成时,可采用分层抽样法.当堂达标固双基1.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)当总体由差异明显的几部分组成时,往往采用分层抽样.()(2)由于分层抽样是在各层中按比例抽取,故每个个体被抽到的可能性不一样.()(3)分层抽样中不含系统抽样和简单随机抽样.()[答案](1)√(2)×(3)×2.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取一个容量为90的样本,应在这三校分别抽取学生()A.30人、30人、30人B.30人、45人、15人C.20人、30人、40人D.30人、50人、10人B[根据各校人数比例有3600∶5400∶1800=2∶3∶1,由于样本容量为90,不难求出甲校应抽取30人、乙校应抽取45人、丙校应抽取15人.]3.某城区有农民、工人、知识分子家庭共计2000家,其中农民家庭1800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到的抽样方法有()①简单随机抽样;②系统抽样;③分层抽样A.②③B.①③C.③D.①②③D[由三种抽样方法的特点知,应先采用分层抽样对农民家庭需用系统抽样得到样本,对工人家庭需用简单随机抽样.]4.一个地区共有5个乡镇,人口3万人,其人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.[解]因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法.具体过程如下:(1)将3万人分为5层,其中一个乡镇为一层.(2)按照样本容量的比例求得各乡镇应抽取的人数分别为60人、40人、100人、40人、60人.(3)按照各层抽取的人数随机抽取各乡镇应抽取的样本.(4)将300人合到一起,即得到一个样本.
本文标题:2019-2020学年高中数学 第2章 统计 2.1.3 分层抽样课件 新人教A版必修3
链接地址:https://www.777doc.com/doc-8290749 .html