您好,欢迎访问三七文档
第一章集合与函数概念1.1集合1.1.1集合的含义与表示第2课时集合的表示学习目标核心素养1.初步掌握集合的两种表示方法——列举法、描述法,感受集合语言的意义和作用.(重点)2.会用集合的两种表示方法表示一些简单集合.(重点、难点)1.通过学习描述法表示集合的方法,培养数学抽象的素养.2.借助描述法转化为列举法时的运算培养数学运算的素养.自主预习探新知1.列举法把集合的元素出来,并用括起来表示集合的方法叫做列举法.花括号“{}”一一列举2.描述法用集合所含元素的表示集合的方法称为描述法.一般形式为A={x∈I|p},其中x叫做代表元素,I是代表元素x的取值范围,p是各元素的共同特征.共同特征思考:(1)不等式x-23的解集中的元素有什么共同特征?(2)如何用描述法表示不等式x-23的解集?[提示](1)元素的共同特征为x∈R,且x5.(2){x|x5,x∈R}.1.方程x2=4的解集用列举法表示为()A.{(-2,2)}B.{-2,2}C.{-2}D.{2}B[由x2=4得x=±2,故用列举法可表示为{-2,2}.]2.用描述法表示函数y=3x+1图象上的所有点的是()A.{x|y=3x+1}B.{y|y=3x+1}C.{(x,y)|y=3x+1}D.{y=3x+1}C[该集合是点集,故可表示为{(x,y)|y=3x+1},选C.]3.不等式4x-57的解集为________.{x|x3}[用描述法可表示为{x|x3}.]合作探究提素养用列举法表示集合【例1】用列举法表示下列给定的集合:(1)不大于10的非负偶数组成的集合A;(2)小于8的质数组成的集合B;(3)方程2x2-x-3=0的实数根组成的集合C;(4)一次函数y=x+3与y=-2x+6的图象的交点组成的集合D.[解](1)不大于10的非负偶数有0,2,4,6,8,10,所以A={0,2,4,6,8,10}.(2)小于8的质数有2,3,5,7,所以B={2,3,5,7}.(3)方程2x2-x-3=0的实数根为-1,32.所以C=-1,32.(4)由y=x+3,y=-2x+6,得x=1,y=4.所以一次函数y=x+3与y=-2x+6的交点为(1,4),所以D={(1,4)}.用列举法表示集合的3个步骤(1)求出集合的元素;(2)把元素一一列举出来,且相同元素只能列举一次;(3)用花括号括起来.提醒:二元方程组的解集,函数图象上的点构成的集合都是点的集合,一定要写成实数对的形式,元素与元素之间用“,”隔开.如{(2,3),(5,-1)}.1.用列举法表示下列集合:(1)满足-2≤x≤2且x∈Z的元素组成的集合A;(2)方程(x-2)2(x-3)=0的解组成的集合M;(3)方程组2x+y=8,x-y=1的解组成的集合B;(4)15的正约数组成的集合N.[解](1)满足-2≤x≤2且x∈Z的元素有-2,-1,0,1,2,故A={-2,-1,0,1,2}.(2)方程(x-2)2(x-3)=0的解为x=2或x=3,∴M={2,3}.(3)解2x+y=8x-y=1,得x=3y=2,∴B={(3,2)}.(4)15的正约数有1,3,5,15,故N={1,3,5,15}.用描述法表示集合【例2】用描述法表示下列集合:(1)比1大又比10小的实数的集合;(2)平面直角坐标系中第二象限内的点组成的集合;(3)被3除余数等于1的正整数组成的集合.[解](1){x∈R|1x10}.(2)集合的代表元素是点,用描述法可表示为{(x,y)|x0,且y0}.(3){x|x=3n+1,n∈N}.描述法表示集合的2个步骤2.用描述法表示下列集合:(1)函数y=-2x2+x图象上的所有点组成的集合;(2)不等式2x-35的解组成的集合;(3)如图中阴影部分的点(含边界)的集合;(4)3和4的所有正的公倍数构成的集合.[解](1)函数y=-2x2+x的图象上的所有点组成的集合可表示为{(x,y)|y=-2x2+x}.(2)不等式2x-35的解组成的集合可表示为{x|2x-35},即{x|x4}.(3)图中阴影部分的点(含边界)的集合可表示为(x,y)0≤x≤32,0≤y≤1.(4)3和4的最小公倍数是12,因此3和4的所有正的公倍数构成的集合是{x|x=12n,n∈N*}.集合表示方法的综合应用[探究问题]下面三个集合:①{x|y=x2+1};②{y|y=x2+1};③{(x,y)|y=x2+1}.(1)它们各自的含义是什么?(2)它们是不是相同的集合?提示:(1)集合①{x|y=x2+1}的代表元素是x,满足条件y=x2+1中的x∈R,所以实质上{x|y=x2+1}=R;集合②的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,所以实质上{y|y=x2+1}={y|y≥1};集合③{(x,y)|y=x2+1}的代表元素是(x,y),可以认为是满足y=x2+1的数对(x,y)的集合,也可以认为是坐标平面内的点(x,y)构成的集合,且这些点的坐标满足y=x2+1,所以{(x,y)|y=x2+1}={P|P是抛物线y=x2+1上的点}.(2)由(1)中三个集合各自的含义知,它们是不同的集合.【例3】集合A={x|kx2-8x+16=0},若集合A中只有一个元素,求实数k的值组成的集合.思路点拨:A中只有一个元素――→等价转化方程kx2-8x+16=0只有一解――→分类讨论求实数k的值[解](1)当k=0时,方程kx2-8x+16=0变为-8x+16=0,解得x=2,满足题意;(2)当k≠0时,要使集合A={x|kx2-8x+16=0}中只有一个元素,则方程kx2-8x+16=0只有一个实数根,所以Δ=64-64k=0,解得k=1,此时集合A={4},满足题意.综上所述,k=0或k=1,故实数k的值组成的集合为{0,1}.1.(变条件)本例若将条件“只有一个元素”改为“有两个元素”其他条件不变,求实数k的值组成的集合.[解]由题意可知,方程kx2-8x+16=0有两个不等实根.故k≠0,Δ=64-64k0,即k1且k≠0.所以实数k组成的集合为{k|k1且k≠0}.2.(变条件)本例若将条件“只有一个元素”改为“至少有一个元素”,其他条件不变,求实数k的取值范围.[解]由题意可知,方程kx2-8x+16=0至少有一个实数根.①当k=0时,由-8x+16=0得x=2,合题意;②当k≠0时,要使方程kx2-8x+16=0至少有一个实数根,则Δ=64-64k≥0,即k≤1.综合①②可知,实数k的取值集合为{k|k≤1}.1.若已知集合是用描述法给出的,读懂集合的代表元素及其属性是解题的关键,如例3中集合A中的元素就是所给方程的根,由此便把集合的元素个数问题转化为方程的根的个数问题.2.在学习过程中要注意数学素养的培养,如本例中用到了等价转化思想和分类讨论的思想.1.表示一个集合可以用列举法,也可以用描述法,一般地,若集合元素为有限个,常用列举法,集合元素为无限个多用描述法.2.处理描述法给出的集合问题时,首先要明确集合的代表元素,特别要分清数集和点集;其次要确定元素满足的条件是什么.当堂达标固双基1.思考辨析(1){1}=1.()(2){(1,2)}={x=1,y=2}.()(3){x∈R|x1}={y∈R|y1}.()(4){x|x2=1}={-1,1}.()[答案](1)×(2)×(3)√(4)√2.由大于-3且小于11的偶数所组成的集合是()A.{x|-3x11,x∈Z}B.{x|-3x11}C.{x|-3x11,x=2k}D.{x|-3x11,x=2k,k∈Z}D[由题意可知,满足题设条件的只有选项D,故选D.]3.一次函数y=x-3与y=-2x的图象的交点组成的集合是()A.{1,-2}B.{x=1,y=-2}C.{(-2,1)}D.{(1,-2)}D[由y=x-3y=-2x得x=1y=-2,∴两函数图象的交点组成的集合是{(1,-2)}.]4.设集合A={x|x2-3x+a=0},若4∈A,试用列举法表示集合A.[解]∵4∈A,∴16-12+a=0,∴a=-4,∴A={x|x2-3x-4=0}={-1,4}.
本文标题:2019-2020学年高中数学 第1章 集合与函数概念 1.1.1 集合的含义与表示(第2课时)集合
链接地址:https://www.777doc.com/doc-8292714 .html