您好,欢迎访问三七文档
数学第十章计数原理与古典概率第2讲排列与组合01基础知识自主回顾02核心考点深度剖析04高效演练分层突破03方法素养助学培优1.排列、组合的定义排列的定义从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列组合的定义合成一组2.排列数、组合数的定义、公式、性质排列数组合数定义从n个不同元素中取出m(m≤n)个元素的所有___________的个数从n个不同元素中取出m(m≤n)个元素的所有______________的个数公式Amn=n(n-1)(n-2)…(n-m+1)=n!(n-m)!Cmn=AmnAmm=n(n-1)(n-2)…(n-m+1)m!性质Ann=_______,0!=______Cmn=Cn-mn,Cmn+Cm-1n=Cmn+1不同排列不同组合n!1[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1)所有元素完全相同的两个排列为相同排列.()(2)一个组合中取出的元素讲究元素的先后顺序.()(3)两个组合相同的充要条件是其中的元素完全相同.()(4)若组合式Cxn=Cmn,则x=m成立.()(5)Amn=n(n-1)(n-2)…(n-m).()××√××[教材衍化]1.(选修23P27A组T7改编)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144B.120C.72D.24解析:选D.“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.2.(选修23P19例4改编)用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为()A.8B.24C.48D.120解析:选C.末位数字排法有A12种,其他位置排法有A34种,共有A12A34=48(种)排法,所以偶数的个数为48.3.(选修23P28A组T17改编)从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是()A.18B.24C.30D.36解析:选C.选出的3人中有2名男同学1名女同学的方法有C24C13=18种,选出的3人中有1名男同学2名女同学的方法有C14C23=12种,故3名学生中男女生都有的选法有C24C13+C14C23=30种.故选C.[易错纠偏](1)分类不清导致出错;(2)相邻元素看成一个整体,不相邻问题采用插空法是解决相邻与不相邻问题的基本方法.1.从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装计算机和组装计算机各2台,则不同的取法有________种.解析:分两类:第一类,取2台原装计算机与3台组装计算机,有C26C35种方法;第二类,取3台原装计算机与2台组装计算机,有C36C25种方法.所以满足条件的不同取法有C26C35+C36C25=350(种).答案:3502.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.解析:设这5件不同的产品分别为A,B,C,D,E,先把产品A与产品B捆绑有A22种摆法,再与产品D,E全排列有A33种摆法,最后把产品C插空有C13种摆法,所以共有A22A33C13=36(种)不同的摆法.答案:363名男生,4名女生,按照不同的要求排队,求不同的排队方案的方法种数.(1)选其中5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体站成一排,男、女各站在一起;(4)全体站成一排,男生不能站在一起.排列应用题【解】(1)问题即为从7个元素中选出5个全排列,有A57=2520种排法.(2)前排3人,后排4人,相当于排成一排,共有A77=5040种排法.(3)相邻问题(捆绑法):男生必须站在一起,是男生的全排列,有A33种排法;女生必须站在一起,是女生的全排列,有A44种排法;全体男生、女生各视为一个元素,有A22种排法,由分步乘法计数原理知,共有N=A33·A44·A22=288(种).(4)不相邻问题(插空法):先安排女生共有A44种排法,男生在4个女生隔成的五个空隙中安排共有A35种排法,故N=A44·A35=1440(种).(变问法)在本例条件下,求不同的排队方案的方法种数:(1)甲不在中间也不在两端;(2)甲、乙两人必须排在两端.解:(1)先排甲有4种,其余有A66种,故共有4·A66=2880种排法.(2)先排甲、乙,再排其余5人,共有A22·A55=240种排法.求解有限制条件排列问题的主要方法直接法分类法选定一个适当的分类标准,将要完成的事件分成几个类型,分别计算每个类型中的排列数,再由分类加法计数原理得出总数分步法选定一个适当的标准,将事件分成几个步骤来完成,分别计算出各步骤的排列数,再由分步乘法计数原理得出总数捆绑法相邻问题捆绑处理,即可以把相邻元素看作一个整体与其他元素进行排列,同时注意捆绑元素的内部排列插空法不相邻问题插空处理,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空隙中间接法对于分类过多的问题,按正难则反,等价转化的方法[提醒](1)插空时要数清插空的个数,捆绑时要注意捆绑后元素的个数及相邻元素的排列数.(2)用间接法求解时,事件的反面数情况要准确.由0,1,2,3,4,5这六个数字组成的无重复数字的自然数,则含有2,3但它们不相邻的五位数有________个.解析:不考虑0在首位,0,1,4,5先排三个位置,则有A34个,2,3去排四个空当,有A24个,即有A34A24个;而0在首位时,有A23A23个,即含有2,3,但它们不相邻的五位数有A34A24-A23A23=252个.答案:252要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少种不同的选法?(1)至少有1名女生入选;(2)男生甲和女生乙入选;(3)男生甲、女生乙至少有一个人入选.组合应用题【解】(1)法一:至少有1名女生入选包括以下几种情况:1女4男,2女3男,3女2男,4女1男,5女.由分类加法计数原理知总选法数为C15C47+C25C37+C35C27+C45C17+C55=771(种).法二:“至少有1名女生入选”的反面是“全是男代表”,可用间接法求解.从12人中任选5人有C512种选法,其中全是男代表的选法有C57种.所以“至少有1名女生入选”的选法有C512-C57=771(种).(2)男生甲和女生乙入选,即只要再从除男生甲和女生乙外的10人中任选3名即可,共有C22C310=120种选法.(3)间接法:“男生甲、女生乙至少有一个人入选”的反面是“两人都不入选”,即从其余10人中任选5人有C510种选法,所以“男生甲、女生乙至少有一个人入选”的选法数为C512-C510=540(种).(变问法)在本例条件下,求至多有2名女生入选的选法种数.解:至多有2名女生入选包括以下几种情况:0女5男,1女4男,2女3男,由分类加法计数原理知总选法数为C57+C15C47+C25C37=546(种).含有附加条件的组合问题的解法(1)“含有”或“不含有”某些元素的组合题型:若“含”,则先将这些元素取出,再由另外元素补足;若“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的组合题型:解这类题目必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解,通常用直接法分类复杂时,用间接法求解.甲、乙两人从4门课程中各选修2门,求:(1)甲、乙所选的课程中恰有1门相同的选法有多少种?(2)甲、乙所选的课程中至少有一门不相同的选法有多少种?解:(1)甲、乙两人从4门课程中各选修2门,且甲、乙所选课程中恰有1门相同的选法种数共有C24C12C12=24(种).(2)甲、乙两人从4门课程中各选两门不同的选法种数为C24C24,又甲、乙两人所选的两门课程都相同的选法种数为C24种,因此满足条件的不同选法种数为C24C24-C24=30(种).排列与组合是高考命题的一个热点,多以选择题或填空题的形式呈现,试题多为中档题.主要命题角度有:(1)相邻、相间问题;(2)分组、分配问题;(3)特殊元素(位置)问题.排列、组合的综合应用(高频考点)角度一相邻、相间问题(2020·杭州八校联考)有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有()A.34种B.48种C.96种D.144种【解析】特殊元素优先安排,先让甲从头、尾中选取一个位置,有C12种选法,乙、丙相邻,捆绑在一起看作一个元素,与其余三个元素全排列,最后乙、丙可以换位,故共有C12A44A22=96(种),故选C.【答案】C角度二分组、分配问题从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答)【解析】分两步,第一步,选出4人,由于至少1名女生,故有C48-C46=55种不同的选法;第二步,从4人中选出队长、副队长各1人,有A24=12种不同的选法.根据分步乘法计数原理知共有55×12=660种不同的选法.【答案】660角度三特殊元素(位置)问题(2020·台州市书生中学高三期中)在某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为________.【解析】①若第一个出场的是男生,则第二个出场的是女生,以后的顺序任意排,方法有C12C13A33=36种.②若第一个出场的是女生(不是女生甲),则将剩余的2个女生排列好,2个男生插空,方法有C12A22A23=24种.故所有的出场顺序的排法种数为36+24=60.【答案】60解排列、组合综合应用问题的思路1.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种解析:选D.因为安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,所以必有1人完成2项工作.先把4项工作分成3组,即2,1,1,有C24C12C11A22=6种,再分配给3个人,有A33=6种,所以不同的安排方式共有6×6=36(种).2.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).解析:把8张奖券分4组有两种分法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有A44种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C23种分法,再分给4人有C23A24种分法,所以不同获奖情况种数为A44+C23A24=24+36=60.答案:603.(2020·浙江东阳中学高三期中检测)用0,1,2,3,4这五个数字组成无重复数字的五位数,则组成的偶数的个数是________;恰有一个偶数数字夹在两个奇数数字之间的自然数的个数是________.解析:由五个数组成五位偶数,可分类个位数放0,2,4;当个位是0时,有A44=24种,当个位是2时,有3A33=18种,当个位是4时与个位是2时相同,则共有24+36=60种.当1和3两个奇数夹着0时,把这三个元素看做一个整体,和另外两个偶数全排列,其中1和3之间还有一个排列,共有2A33=12种,1和3两个奇数夹着2时,同前面类似,只是注意0不能放在首位,共有2C12A22=8种,当1和3两个奇数夹着4时,也有同样多的结果.根据分类加法计数原理得到共有12+16=28种结果.答案:6028核心素养系列21逻辑推理、数学运算——分组分配问题中的易错点分组问题是同学们学习中的难点问题,在考试中不容易得分,在解题过程中容易掉入陷阱.解决这类问题的一个基本指导思想是先分组后分配.关于分组问题,有整体均分、部分均分和不等分组三种,无论分成几组,应注意的是只要有一些组中元素的个数相等,就存在均分现象.下面结合一些典型问题谈谈如何避免掉进分组问题中的陷阱.一、整体均分问题国家教育部为了发展贫
本文标题:(浙江专用)2021版新高考数学一轮复习 第十章 计数原理与古典概率 2 第2讲 排列与组合课件
链接地址:https://www.777doc.com/doc-8322183 .html