您好,欢迎访问三七文档
第十章计数原理与古典概率第2讲排列与组合1.排列、组合的定义排列的定义从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列组合的定义合成一组2.排列数、组合数的定义、公式、性质排列数组合数定义从n个不同元素中取出m(m≤n)个元素的所有_________的个数从n个不同元素中取出m(m≤n)个元素的所有_________的个数不同排列不同组合排列数组合数公式Amn=n(n-1)(n-2)…(n-m+1)=n!(n-m)!Cmn=AmnAmm=n(n-1)(n-2)…(n-m+1)m!性质Ann=____,0!=__Cmn=Cn-mn,Cmn+Cm-1n=Cmn+1n!1判断正误(正确的打“√”,错误的打“×”)(1)所有元素完全相同的两个排列为相同排列.()(2)一个组合中取出的元素讲究元素的先后顺序.()(3)两个组合相同的充要条件是其中的元素完全相同.()(4)若组合式Cxn=Cmn,则x=m成立.()(5)Amn=n(n-1)(n-2)…(n-m).()××√××(教材习题改编)从3,5,7,11这四个质数中,每次取出两个不同的数分别为a,b,共可得到lga-lgb的不同值的个数是()A.6B.8C.12D.16解析:选C.由于lga-lgb=lgab,从3,5,7,11中取出两个不同的数分别赋值给a和b共有A24=12种,所以得到不同的值有12个.(2019·台州市书生中学高三期中)甲、乙两人计划从A、B、C三个景点中各选择两个游玩,则两人所选景点不全相同的选法共有()A.3种B.6种C.9种D.12种解析:选B.甲、乙两人从A、B、C三个景点中各选择两个游玩,总的选法有C23C23种选法,两人所选景点完全相同的选法有C23种,所以两人所选景点不全相同的选法共有C23C23-C23=6(种).(2018·高考浙江卷)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成________个没有重复数字的四位数.(用数字作答)解析:若取的4个数字不包括0,则可以组成的四位数的个数为C25C23A44;若取的4个数字包括0,则可以组成的四位数的个数为C25C13C13A33.综上,一共可以组成的没有重复数字的四位数的个数为C25C23A44+C25C13C13A33=720+540=1260.答案:1260四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案有________种.解析:分两步:先将四名优等生分成2,1,1三组,共有C24种;而后,对三组学生全排三所学校,即进行全排列,有A33种.依分步乘法计数原理,共有N=C24A33=36(种).答案:363名男生,4名女生,按照不同的要求排队,求不同的排队方案的方法种数.(1)选其中5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体站成一排,男、女各站在一起;(4)全体站成一排,男生不能站在一起.排列应用题【解】(1)问题即为从7个元素中选出5个全排列,有A57=2520种排法.(2)前排3人,后排4人,相当于排成一排,共有A77=5040种排法.(3)相邻问题(捆绑法):男生必须站在一起,是男生的全排列,有A33种排法;女生必须站在一起,是女生的全排列,有A44种排法;全体男生、女生各视为一个元素,有A22种排法,由分步乘法计数原理知,共有N=A33·A44·A22=288(种).(4)不相邻问题(插空法):先安排女生共有A44种排法,男生在4个女生隔成的五个空中安排共有A35种排法,故N=A44·A35=1440(种).在本例条件下,求不同的排队方案的方法种数:(1)甲不在中间也不在两端;(2)甲、乙两人必须排在两端.解:(1)先排甲有4种,其余有A66种,故共有4·A66=2880种排法.(2)先排甲、乙,再排其余5人,共有A22·A55=240种排法.求解有限制条件排列问题的主要方法直接法分类法选定一个适当的分类标准,将要完成的事件分成几个类型,分别计算每个类型中的排列数,再由分类加法计数原理得出总数分步法选定一个适当的标准,将事件分成几个步骤来完成,分别计算出各步骤的排列数,再由分步乘法计数原理得出总数捆绑法相邻问题捆绑处理,即可以把相邻元素看作一个整体与其他元素进行排列,同时注意捆绑元素的内部排列插空法不相邻问题插空处理,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空中间接法对于分类过多的问题,按正难则反,等价转化的方法[提醒](1)插空时要数清插空的个数,捆绑时要注意捆绑后元素的个数及相邻元素的排列数.(2)用间接法求解时,事件的反面数情况要准确.由0,1,2,3,4,5这六个数字组成的无重复数字的自然数,则含有2,3但它们不相邻的五位数有________个.解析:不考虑0在首位,0,1,4,5先排三个位置,则有A34个,2,3去排四个空当,有A24个,即有A34A24个;而0在首位时,有A23A23个,即含有2,3,但它们不相邻的五位数有A34A24-A23A23=252个.答案:252要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少种不同的选法?(1)至少有1名女生入选;(2)男生甲和女生乙入选;(3)男生甲、女生乙至少有一个人入选.组合应用题【解】(1)法一:至少有1名女生入选包括以下几种情况:1女4男,2女3男,3女2男,4女1男,5女.由分类加法计数原理知总选法数为C15C47+C25C37+C35C27+C45C17+C55=771(种).法二:“至少有1名女生入选”的反面是“全是男代表”,可用间接法求解.从12人中任选5人有C512种选法,其中全是男代表的选法有C57种.所以“至少有1名女生入选”的选法有C512-C57=771(种).(2)男生甲和女生乙入选,即只要再从除男生甲和女生乙外的10人中任选3名即可,共有C22C310=120种选法.(3)间接法:“男生甲、女生乙至少有一个人入选”的反面是“两人都不入选”,即从其余10人中任选5人有C510种选法,所以“男生甲、女生乙至少有一个人入选”的选法数为C512-C510=540(种).在本例条件下,求至多有2名女生入选的选法种数.解:至多有2名女生入选包括以下几种情况:0女5男,1女4男,2女3男,由分类加法计数原理知总选法数为C57+C15C47+C25C37=546(种).含有附加条件的组合问题的解法(1)“含有”或“不含有”某些元素的组合题型:若“含”,则先将这些元素取出,再由另外元素补足;若“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的组合题型:解这类题目必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解,通常用直接法分类复杂时,用间接法求解.甲、乙两人从4门课程中各选修2门,求:(1)甲、乙所选的课程中恰有1门相同的选法有多少种?(2)甲、乙所选的课程中至少有一门不相同的选法有多少种?解:(1)甲、乙两人从4门课程中各选修2门,且甲、乙所选课程中恰有1门相同的选法种数共有C24C12C12=24(种).(2)甲、乙两人从4门课程中各选两门不同的选法种数为C24C24,又甲、乙两人所选的两门课程都相同的选法种数为C24种,因此满足条件的不同选法种数为C24C24-C24=30(种).(高频考点)排列与组合是高考命题的一个热点,多以选择题或填空题的形式呈现,试题多为中档题.主要命题角度有:(1)相邻、相间问题;(2)分组、分配问题;(3)特殊元素(位置)问题.排列、组合的综合应用角度一相邻、相间问题(2019·杭州八校联考)有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有()A.34种B.48种C.96种D.144种【解析】特殊元素优先安排,先让甲从头、尾中选取一个位置,有C12种选法,乙、丙相邻,捆绑在一起看作一个元素,与其余三个元素全排列,最后乙、丙可以换位,故共有C12A44A22=96种,故选C.【答案】C角度二分组、分配问题(2017·高考浙江卷)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答)【解析】分两步,第一步,选出4人,由于至少1名女生,故有C48-C46=55种不同的选法;第二步,从4人中选出队长、副队长各1人,有A24=12种不同的选法.根据分步乘法计数原理知共有55×12=660种不同的选法.【答案】660角度三特殊元素(位置)问题(2019·台州市书生中学高三期中)在某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为________.【解析】①若第一个出场的是男生,则第二个出场的是女生,以后的顺序任意排,方法有C12C13A33=36种.②若第一个出场的是女生(不是女生甲),则将剩余的2个女生排列好,2个男生插空,方法有C12A22A23=24种.故所有的出场顺序的排法种数为36+24=60.【答案】60解排列、组合综合应用问题的思路1.(2017·高考全国卷Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种解析:选D.因为安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,所以必有1人完成2项工作.先把4项工作分成3组,即2,1,1,有C24C12C11A22=6种,再分配给3个人,有A33=6种,所以不同的安排方式共有6×6=36(种).2.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).解析:把8张奖券分4组有两种分法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有A44种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C23种分法,再分给4人有C23A24种分法,所以不同获奖情况种数为A44+C23A24=24+36=60.答案:603.(2019·浙江东阳中学高三期中检测)用0,1,2,3,4这五个数字组成无重复数字的五位数,则组成的偶数的个数是________;恰有一个偶数数字夹在两个奇数数字之间的自然数的个数是________.解析:由五个数组成五位偶数,可分类个位数放0,2,4;当个位是0时,有A44=24种,当个位是2时,有3A33=18种,当个位是4时与个位是2时相同,则共有24+36=60种.当1和3两个奇数夹着0时,把这三个元素看做一个整体,和另外两个偶数全排列,其中1和3之间还有一个排列,共有2A33=12种,1和3两个奇数夹着2时,同前面类似,只是注意0不能放在首位,共有2C12A22=8种,当1和3两个奇数夹着4时,也有同样多的结果.根据分类加法计数原理得到共有12+16=28种结果.答案:6028对于有附加条件的排列、组合应用题,通常从三个途径考虑(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素.(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数.排列、组合问题的求解方法与技巧(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题排除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件.易错防范(1)区分一个问题属于排列问题还是组合问题,关键在于是否与顺序有关.(2)解受条件限制的排列、组合题,通常有直接法(合理分类)和间接法(排除法).分类时标准应统一,避免出现重复或遗漏.
本文标题:(浙江专用)2020版高考数学大一轮复习 第十章 计数原理与古典概率 第2讲 排列与组合课件
链接地址:https://www.777doc.com/doc-8322547 .html