您好,欢迎访问三七文档
第二课时数列求和1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)如果数列{an}为等比数列,且公比不等于1,则其前n项和Sn=a1-an+11-q()(2)当n≥2时,1n2-1=121n-1-1n+1()(3)求Sn=a+2a2+3a3+…+nan之和时只要把上式等号两边同时乘以a即可根据错位相减法求得()基本技能·素养培优解析:(1)正确.公比不等于1的等比数列的前n项和Sn=a11-qn1-q=a1-an+11-q.(2)正确.化简即得.(3)错误.a的值不能确定.(4)数列12n+2n-1的前n项和为n2+12n()(5)若数列a1,a2-a1,…,an-an-1是首项为1,公比为3的等比数列,则数列{an}的通项公式是an=3n-12()(4)错误.设数列的通项公式为an=12n+2n-1,则用分组转化法求和,Sn=12+122+…+12n+2+4+…+2n-n=121-12n1-12+2+2nn2-n=1-12n+n+n2-n=1-12n+n2.(5)正确.由题意an=a1+a2-a1+…+an-1-an-2+an-an-1=1-3n1-3=3n-12.答案:(1)√(2)√(3)×(4)×(5)√2.已知{an}为等差数列,Sn为其前n项和,若a1=12,S2=a3,则S40=()A.290B.390C.410D.430解析:选C设数列{an}的公差为d.∵S2=a3,∴2a1+d=a1+2d,∴d=12,∴S40=40×12+40×392×12=410.3.设等比数列{an}的前n项和为Sn,已知a1=2,且an+2an+1+an+2=0(n∈N*),则S2016=________.解析:设等比数列{an}的公比为q,则an+2an+1+an+2=an(1+2q+q2)=0,∵an≠0,∴q2+2q+1=0.解得q=-1,∴S2016=0.答案:04.已知数列{an}的通项公式an=2n-12n,其前n项和Sn=32164,则项数n等于________.解析:an=2n-12n=1-12n,∴Sn=n-121-12n1-12=n-1+12n=32164=5+164,∴n=6.答案:6[典例]已知数列{cn}:112,214,318,…,试求{cn}的前n项和.[解]令{cn}的前n项和为Sn,则Sn=112+214+318+…+n+12n=(1+2+3+…+n)+12+14+18+…+12n=nn+12+121-12n1-12=nn+12+1-12n.即数列{cn}的前n项和为Sn=n2+n2+1-12n.考点一分组转化法求和若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和而后相加减.[类题通法]1.数列{(-1)nn}的前n项和为Sn,则S2016等于()A.1008B.-1008C.2016D.-2016解析:选AS2016=(-1+2)+(-3+4)+…+(-2015+2016)=1008.[针对训练]2.数列{an}的通项an=n2cos2nπ3-sin2nπ3,其前n项和为Sn,则S30为________.解析:∵an=n2cos2nπ3-sin2nπ3=n2cos2nπ3,∴S30=12·cos2π3+22·cos4π3+32·cos2π+…+302·cos20π=-12×12-12×22+32-12×42-12×52+62+…-12×282-12×292+302=-12[(12+22-2×32)+(42+52-2×62)+…+(282+292-2×302)]=-12[(12-32)+(42-62)+…+(282-302)+(22-32)+(52-62)+…+(292-302)]=-12[-2(4+10+16+…+58)-(5+11+17+…+59)]=-12-2×4+582×10-5+592×10=470.答案:470[典例]已知等比数列{an}的各项均为正数,且2a1+3a2=1,a23=9a2a6.(1)求数列{an}的通项公式;(2)设bn=-log3an,求数列1bnbn+1的前n项和Tn.[解](1)设数列{an}的公比为q,由a23=9a2a6得a23=9a24,∴q2=19.由条件可知q0,故q=13.考点二裂项相消法求和由2a1+3a2=1得2a1+3a1q=1,∴a1=13.故数列{an}的通项公式为an=13n.(2)∵an=13n,∴bn=-log313n=2n,∴1bnbn+1=14nn+1=141n-1n+1,∴Tn=141-12+12-13+…+1n-1n+1=141-1n+1=n4n+1.(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(2)裂项求和的几种常见类型:①1nn+k=1k1n-1n+k;②1n+k+n=1kn+k-n;③12n-12n+1=1212n-1-12n+1;④若{an}是公差为d的等差数列,则1anan+1=1d1an-1an+1.[类题通法]解:(1)设等差数列{an}的公差为d,由题意可得a1+a2+a3=15,a5+a9=30⇒3a1+3d=15,2a1+12d=30⇒a1=3,d=2,则an=3+2(n-1)=2n+1,Sn=3n+2nn-12=n2+2n.已知等差数列{an}的前n项和为Sn,且S3=15,a5+a9=30.(1)求an及Sn;(2)若数列{bn}满足bn(Sn-n)=2(n∈N*),数列{bn}的前n项和为Tn,求证:Tn2.[针对训练](2)证明:由题意可得bn=2Sn-n=2n2+n=21n-1n+1,∴Tn=b1+b2+…+bn=21-12+12-13+…+1n-1n+1=21-1n+12.[典例]已知数列{an}的首项a1=23,an+1=2anan+1,n=1,2,3,….(1)证明:数列1an-1是等比数列;(2)求数列nan的前n项和Sn.考点三错位相减法求和[解](1)证明:由an+1=2anan+1,所以1an+1=an+12an=12+12×1an,所以1an+1-1=121an-1,又a1=23,所以1a1-1=12,所以数列1an-1是以12为首项,12为公比的等比数列.(2)由(1)得1an-1=12×12n-1=12n,即1an=12n+1,所以nan=n2n+n.设Tn=12+222+323+…+n2n,①则12Tn=122+223+…+n-12n+n2n+1,②由①-②得12Tn=12+122+…+12n-n2n+1=121-12n1-12-n2n+1=1-12n-n2n+1,Tn=2-12n-1-n2n.又1+2+3+…+n=nn+12,所以数列nan的前n项和Sn=2-2+n2n+nn+12=n2+n+42-n+22n.如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法.在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn-qSn”的表达式.[类题通法]数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*.(1)证明:数列ann是等差数列;(2)设bn=3n·an,求数列{bn}的前n项和Sn.解:(1)证明:由已知可得an+1n+1=ann+1,即an+1n+1-ann=1.所以ann是以a11=1为首项,1为公差的等差数列.[针对训练](2)由(1)得ann=1+(n-1)·1=n,所以an=n2.从而bn=n·3n.Sn=1·31+2·32+3·33+…+n·3n,①3Sn=1·32+2·33+…+(n-1)·3n+n·3n+1.②①-②得-2Sn=31+32+…+3n-n·3n+1=3·1-3n1-3-n·3n+1=1-2n·3n+1-32.所以Sn=2n-1·3n+1+34.
本文标题:(浙江专用)2019-2020学年高中数学 第二章 数列 2.5 等比数列的前n项和 第二课时 数列
链接地址:https://www.777doc.com/doc-8322782 .html