您好,欢迎访问三七文档
光子晶体一、光子晶体简介二、光子晶体理论三、光子晶体应用四、光子晶体展望人类材料史•利用自然材料–石器时代、铜器时代、铁器时代...•材料改性–青铜、陶瓷、水泥…•更深层次–电学特性:金属、半导体…–磁学特性•光学性质光子比电子的优点•传播速度更快•携带更大信息–更大的带宽•电子系统:105Hz•光纤系统:1015Hz•无光子-光子相互作用•更小的能量损耗全光通讯二十一世纪:internetera光纤电子器件全光器件能否控制光子的流动?一、光子晶体简介•光子晶体(photoniccrystal)是一种介电常数随空间周期性变化的新型光学微结构材料,其最根本的特征是具有光子禁带。•Whatisphotoniccrystal?周期排列的人工微结构材料光子晶体图示构成材料:半导体、绝缘体、金属材料等单元尺寸:毫米、微米、亚微米《科学》1998Bestbets衰老、对付生化武器、光子晶体、吸热池、哮喘治疗、全球气候走向光子晶体概念的产生:到1987年,E.Yablonovitch及S.John不约而同地指出:在介电系数呈周期性排列的三维介电材料中,电磁波经介电函数散射后,某些波段的电磁波强度会因破坏性干涉而呈指数衰减,无法在系统内传递,相当于在频谱上形成能隙,于是色散关系也具有带状结构,此即所谓的光子能带结构(photonicbandstructures)。具有光子能带结构的介电物质,就称为光能隙系统(photonicband-gapsystem,简称PBG系统),或简称光子晶体(photoniccrystals)。光子晶体简介光子和电子都是波粒二象性的光子先认识波动性后认识粒子性描写麦克斯韦方程电子先认识粒子性后认识波动性描写薛定谔方程•薛定谔方程的解依赖于作用势无作用势→平面波函数→能级连续库伦势→氢原子波函数→能级分立固体中周期势→布洛赫波函数→能带麦克斯韦方程的解依赖于传播介质无限自由空间→平面波→频率连续波导管→TE/TM型波→截止频率介电常数周期结构→?→能带?光子电子服从方程麦克斯韦(Maxwell)方程薛定谔方程对应波矢量波标量波自旋自旋为1的玻色子自旋为1/2的费米子相互作用没有很强固体物理中的许多其它概念也可以用在光子晶体中,不过需要指出的是光子晶体与常规的晶体虽然有相同的地方,也有本质的不同,如右图性质电子晶体光子晶体声子晶体结构结晶体(自然或生长的)由两种(或以上)介电材料构成的周期性结构由两种(或以上)弹性材料构成的周期性结构调控对象电子的输运行为费米子电磁波的传播玻色子机械波的传播玻色子参量普适常数原子数各组元的介电常数各组元的质量密度,声波波度晶格常数1-5Å1m-1cm1mm-1m尺度原子尺度电磁波波长声波波长波德布罗意波(电子)电磁波(光子)机械波(声波)偏振自旋,横波横波与纵波的耦合波动方程薛定谔方程麦克斯韦方程弹性波波动方程特征电子禁带,缺陷态,表面态光子禁带,局域模式,表面态声子禁带,局域模式,表面态光子晶体简介自然界中的光子晶体:光子晶体虽然是个新名词,但自然界中早已存在拥有这种性质的物质。盛产于澳洲的宝石蛋白石(opal)。蛋白石是由二氧化硅纳米球(nano-sphere)沉积形成的矿物,其色彩缤纷的外观与色素无关,而是因为它几何结构上的周期性使它具有光子能带结构,随着能隙位置不同,反射光的颜色也跟着变化;换言之,是光能隙在玩变色把戏。在生物界中,也不乏光子晶体的踪影。以花间飞舞的蝴蝶为例,其翅膀上的斑斓色彩,其实是鳞粉上排列整齐的次微米结构,选择性反射日光的结果.翅膀鳞粉具有光子晶体结构的蝴蝶bluegreenyellowbrown2003年ANDREWR.PARKER等发现一种澳洲昆士兰的东北部森林的甲虫(Pachyrhynchusargus),它的外壳分布有和蛋白石一样的光子晶体结构类似物,其具有从任何方向都可见的金属色泽。这种栖息于大陆棚上﹐有着刺毛的低等海生无脊椎动物`海毛虫(seamouse)`具有引人瞩目的虹彩。此种海毛虫的刺毛是由为数众多之六角圆柱体层层叠积形成的结晶状构造物,其具有与光子晶体光纤(photoniccrystalfiber)--一样的物理属性。这种刺毛亦能捕捉光线且仅反射某些波长的色光﹐而发出鲜明色彩第一个功败垂成的三维光子晶体遗憾的是,理论学家稍后指出,上述系统因对称性(symmetry)之故,在W和U两个方向上并非真正没有能态存在,只是该频率范围内的能态数目相对较少,因此只具有虚能隙(pseudogap)1989年,Yablonovitch及Gmitter首次尝试在实验上证明三维光子能带结构的存在。实验中采用的周期性介电系统是Al2O3块材中,按照面心立方(face-centeredcubic,fcc)的排列方式钻了将近八千个球状空洞,如此形成一个人造的巨观晶体。三氧化二铝和空气的介电常数分别为12.5和1.0,面心立方体的晶格常数是1.27。根据实验量得的透射频谱,所对应的三维能带结构右图所示:最初光子晶体的人工制备:光子晶体简介光子晶体简介两年之后,Yablonovitch等人卷土重来,这回他们调整制作方式,在块材上沿三个夹120度角的轴钻洞,如此得到的fcc晶格含有非球形的“原子”(如右图),终于打破了对称的束缚,在微波波段获得真正的绝对能隙,证实该系统为一个光子绝缘体(photonicinsulator)。第一个具有绝对能隙的光子晶体,及其经过特别设计的制作方式三.光子晶体制备1.一维光子晶体结构简单,制作简便,制备方法有真空镀膜技术、溶胶-凝胶技术、MOCVD、分子束外延等2.二维光子晶体主要结构有周期性排列的介质棒阵列和打孔的薄膜结构。排列方式一般为四边形和三角形点阵,通过调节棒或孔的直径以及间距大小,可以实现不同频率与带宽的光子禁带。一般采用激光刻蚀、电子束刻蚀和外延生长法等制造二维光子晶体(a)介质棒阵列(b)打孔的薄膜结构3.三维光子晶体制备•精密机械加工法:Yablonovich等用打孔的方法在基体表面每一点沿着相差120度的方向往里打孔,在基底材料里留下了近椭球圆柱形结构组成的面心立方光子晶体.只能用于加工微波波段的光子晶体,对于更短波长的光子晶体,显得无能为力•半导体制造技术的方法:将电子束蚀刻,反应离子束蚀刻,化学气相淀积等技术运用于堆积式的光子晶体制造.S.Y.Linetal.,Nature394,251(1998)(1)利用电子束,激光束等在Si基上进行蚀刻,留出一系列彼此平行的Si棒;(2)再用水解等方法将Si棒之间的区域用SiO2进行填充,并进行表面机械抛光;(3)然后再用多晶Si沉积的方法在(2)中所得的层上铺一层Si,以便蚀刻与(2)中Si棒向垂直的第二层Si棒(4)重复以上步骤以制得所需的层数,然后再用酸将SiO2清洗掉,即得三维周期性结构电磁波可表示为:zkωtieHHzkωtieEE0~~0~~k和分别为角频率和波数,它们与周期T和波长的关系为:22kT二、光子晶体理论波的传播速度(相速)为:kT和初相位:的振幅和分别是,,,设HEHEHE00HEiieHHeEE0000~~2002rrk:代入波动方程,即可得0rE22rEk程为定态下的电磁波波动方.1r,则如果介质为非磁性介质对于非均匀介质,尤其是其介电常数是周期性变化时,有nkrr'rr和变动介电常数平均介电常数两个部分之和:可将相对介电常数写为rEcrEcrEcrEcrEckrrrrrr22'22222'22222'2代入波动方程,可得:则有:比较电子和光子(在晶体中)的定态波动方程,可以看出两式得相似之处:能量本征值即平均介电常数相当于一个周期势场;相当于即周期变化的介电常数,~,~22'22EcrVrcrrr光子晶体中的光子能带不同于半导体中的电子能带呈线性关系和系的特点是因此其色散关光子的能量kkcppEE国际上激烈竞争基于光子晶体的光子集成线路计划基于蛋白石结构的光子晶体波长尺度的通讯用光子部件超快光子学计划重组天线计划DARPADARPA可调光子晶体计划毫米和亚毫米波段的集成天线技术日美欧四、光子晶体应用1.微波领域中的应用2.电子计算机技术中的应用3.光电元件中的应用4.其他方面应用微波领域中的应用—天线普通天线传统的微波天线制备方法是将天线直接制备在介质基底上,导致大量的能量被天线基底所吸收,效率很低。一般用GaAs(钙、砷)介质作基底的天线,98%的能量损耗在基底中,只有2%的能量被发射出去光子晶体天线针对某微波频段可设计出需要的光子晶体,并让该光子晶体作为天线的基片。因为此微波波段落在光子晶体的禁带中,因此基底不会吸收微波,这就实现了无损耗全反射,把能量全部发射到空中。第一个光子晶体基底的偶极平面微波天线1993年在美国研制成功Brownetal.,J.Opt.Soc.Am.B10,404(1993)微波波段光子晶体-1993年,美国研制反射率接近100%的光子晶体偶极子天线;-1996-1999年,光子晶体微带贴片天线,抑制谐振模式,消除表面波影响,提高天线效率;-1999年,Conexant国际公司研制成功光子晶体人体防护天线。-1996-1999年,光子晶体微带传输线,宽带放大器,滤波器等.微波领域中的应用—手机的辐射防护手机的危害手机是一个小型的、但能量极强的电磁波发生器,其工作频率890MHz到965MHz,辐射出的电磁波对人体细胞具有极强的致畸作用。手机在使用过程中,这种电磁波始终围绕着人的头部。长期、高频率使用手机,会造成正常脑的支持细胞——胶质细胞DNA分子链的电离损害,导致DNA碱基分子链的断裂,引起细胞的癌变利用光子晶体可以抑制某种频率的微波传播的原理,可以在手机的天线部位制造维播放护罩,从而避免对人体有害的微波辐射直接照射手机用户的头部。这种技术目前还没有成熟,但是至少有一个美好的前景。电子计算机技术中的应用--CPU自从1970年以来,可以被放置到微电子芯片的电子元件数量以18月翻一番的速度增长,然而即使这种被成为摩尔定律的趋势可以在以后的几年内必将逐渐的走向平缓,直至目前的极限。要提高CPU速度,也就是缩短CPU完成指令的时间,就必须减少电信号在各个元件的延迟时间。减小元件体积,缩短它们之间的距离。但是元件缩小到一定程度后就很难再有大的突,而且其电子元件的发热量将十分惊人,很有可能因为过热而产生电子漂移现象,导致系统不稳定甚至崩溃。目前所遇的困难假若用光线来代替电子传递信号,则可以让生产百亿Hz(1012Hz)的个人电脑成为可能。这种高速的处理器可以用“光子晶体”(quasicrystal)的物质所产生的光成分实现。这些材料均具有高度的周期性结构,这种周期性可以用来控制和操纵光波的产生和传播。目前人们是依靠电子来实现微电子技术革命,今后则将依靠光子来继续这场革命,这就需要能捕获和控制光传播方式的光子晶体之类的新材料。而光子晶体正是可以胜任这种工作的材料解决方法整合各种光子晶体相关结构所设计的集成光路之想象图电子计算机技术中的应用--CPU电子计算机技术中的应用--光纤不同波长的光穿过光纤纤芯的速度也不同。考虑长距传输时,在信号中就将出现时间延迟,所以信号就需要在不同的波长编码。光纤纤芯越粗延迟越厉害,通过这样的纤维的一个光脉冲变宽,必将限制能精确接收的数据率。传统光纤的缺点解决的方法还有一种就是采用单模光纤,即尽量减少光纤纤芯的直径,从而可以只允许一个模式的光路通过,从而避免上述问题。但同时成本将大大提高。光子晶体光纤光子晶体带隙保证了能量基本无损失,而且不会出现延迟等现象。英国Bath大学的研究人员用二维光子晶体成功制成新型光纤:由几百个传统的氧化硅棒和氧化硅毛细管依次绑在一起组成六角阵列,然后烧结从而形成蜂窝结构亚微米
本文标题:光子晶体及其应用
链接地址:https://www.777doc.com/doc-8325129 .html