您好,欢迎访问三七文档
6-4带电粒子在组合场、叠加场中的运动备考精要1.组合场问题——“分与合”先把带电粒子的运动按照组合场的顺序分解为一个个独立的过程,并分析每个过程中带电粒子的受力情况和运动情况,然后用衔接速度把这些过程关联起来,列方程解题。带电粒子的常见运动类型及求解方法2.叠加场问题——“三步曲”三级练·四翼展一练固双基——基础性考法1.(2017·全国卷Ⅰ)如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里。三个带正电的微粒a、b、c电荷量相等,质量分别为ma、mb、mc。已知在该区域内,a在纸面内做匀速圆周运动,b在纸面内向右做匀速直线运动,c在纸面内向左做匀速直线运动。下列选项正确的是()A.mambmcB.mbmamcC.mcmambD.mcmbma解析:该空间区域为匀强电场、匀强磁场和重力场的叠加场,a在纸面内做匀速圆周运动,可知其重力与所受到的电场力平衡,洛伦兹力提供其做匀速圆周运动的向心力,有mag=qE,解得ma=qEg。b在纸面内向右做匀速直线运动,由左手定则可判断出其所受洛伦兹力方向竖直向上,可知mbg=qE+qvbB,解得mb=qEg+qvbBg。c在纸面内向左做匀速直线运动,由左手定则可判断出其所受洛伦兹力方向竖直向下,可知mcg+qvcB=qE,解得mc=qEg-qvcBg。综上所述,可知mbmamc,选项B正确。答案:B2.(2019·全国卷Ⅲ)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B和B、方向均垂直于纸面向外的匀强磁场。一质量为m、电荷量为q(q0)的粒子垂直于x轴射入第二象限,随后垂直于y轴进入第一象限,最后经过x轴离开第一象限。粒子在磁场中运动的时间为()A.5πm6qBB.7πm6qBC.11πm6qBD.13πm6qB解析:带电粒子在不同磁场中做圆周运动,其速度大小不变,由r=mvqB知,粒子在第一象限内运动的圆半径是在第二象限内运动圆半径的2倍,如图所示。由T=2πrv,及t1=θ2πT可知粒子在第二象限内运动的时间t1=π22π·2πmqB=πm2qB答案:B粒子在第一象限内运动的时间t2=π32π·2πm×2qB=2πm3qB则粒子在磁场中运动的时间t=t1+t2=7πm6qB,选项B正确。3.(2016·全国卷Ⅰ)现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定。质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场。若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍。此离子和质子的质量比约为()A.11B.12C.121D.144答案:D解析:带电粒子在加速电场中运动时,有qU=12mv2,在磁场中偏转时,其半径r=mvqB,由以上两式整理得:r=1B2mUq。由于质子与一价正离子的电荷量相同,B1∶B2=1∶12,当半径相等时,解得:m2m1=144,选项D正确。4.[多选]如图所示,已知一带电小球在光滑绝缘的水平面上从静止开始经电压U加速后,水平进入互相垂直的匀强电场E和匀强磁场B的复合场中(E和B已知),小球在此空间的竖直面内做匀速圆周运动,则下列说法中正确的是()A.小球可能带正电B.小球做匀速圆周运动的半径为r=1B2UEgC.小球做匀速圆周运动的周期为T=2πEBgD.若电压U增大,则小球做匀速圆周运动的周期变大解析:小球在竖直平面内做匀速圆周运动,故重力等于电场力,洛伦兹力提供向心力,所以mg=qE,由于电场力的方向与场强的方向相反,故小球带负电,故A错误;由于洛伦兹力提供向心力,故有qvB=mv2r,解得r=mvqB,又由于qU=12mv2,解得v=2qUm,所以r=1B2mUq=1B2UEg,故B正确;由于洛伦兹力提供向心力做圆周运动,故有运动周期T=2πrv=2πmqB=2πEBg,故C正确;显然运动周期与加速电压无关,电压U增大时,小球做匀速圆周运动的周期不变,故D错误。答案:BC5.[多选]如图所示,在区域Ⅰ和区域Ⅱ内分别存在与纸面垂直但方向相反的匀强磁场,区域Ⅱ内磁感应强度是区域Ⅰ内磁感应强度的2倍,一带电粒子在区域Ⅰ左侧边界处以垂直边界的速度进入区域Ⅰ,发现粒子离开区域Ⅰ时速度方向改变了30°,然后进入区域Ⅱ,测得粒子在区域Ⅱ内的运动时间与在区域Ⅰ内的运动时间相等,下列说法正确的是()A.粒子在区域Ⅰ和区域Ⅱ中的速率之比为1∶1B.粒子在区域Ⅰ和区域Ⅱ中的角速度之比为2∶1C.粒子在区域Ⅰ和区域Ⅱ中的圆心角之比为1∶2D.区域Ⅰ和区域Ⅱ的宽度之比为1∶1解析:由于洛伦兹力对带电粒子不做功,故粒子在两磁场中的运动速率不变,故A正确。由洛伦兹力f=qvB=ma和a=vω可知,粒子运动的角速度之比为ω1∶ω2=B1∶B2=1∶2,则B错误。由于粒子在区域Ⅰ和区域Ⅱ内的运动时间相等,由t=θmqB可得t=θ1mqB1=θ2mqB2,且B2=2B1,所以可得θ1∶θ2=1∶2,则C正确。由题意可知,粒子在区域Ⅰ中运动的圆心角为30°,则粒子在区域Ⅱ中运动的圆心角为60°,由R=mvqB可知粒子在区域Ⅰ中的运动半径是在区域Ⅱ中运动半径的2倍,设粒答案:ACD子在区域Ⅱ中的运动半径为r,作出粒子运动的轨迹如图所示,则由图可知,区域Ⅰ的宽度d1=2rsin30°=r,区域Ⅱ的宽度d2=rsin30°+rcos(180°-60°-60°)=r,故D正确。二练会迁移——综合性考法1.(2019·天津高考)笔记本电脑机身和显示屏对应部位分别有磁体和霍尔元件。当显示屏开启时磁体远离霍尔元件,电脑正常工作;当显示屏闭合时磁体靠近霍尔元件,屏幕熄灭,电脑进入休眠状态。如图所示,一块宽为a、长为c的矩形半导体霍尔元件,元件内的导电粒子是电荷量为e的自由电子,通入方向向右的电流时,电子的定向移动速度为v。当显示屏闭合时元件处于垂直于上表面、方向向下的匀强磁场中,于是元件的前、后表面间出现电压U,以此控制屏幕的熄灭。则元件的()A.前表面的电势比后表面的低B.前、后表面间的电压U与v无关C.前、后表面间的电压U与c成正比D.自由电子受到的洛伦兹力大小为eUa解析:由左手定则判断,电子所受的洛伦兹力指向后表面,从而后表面带负电,电势比前表面的低,A错误。电子受力平衡后,U稳定不变,由eUa=evB得U=Bav,前、后表面间的电压U与v成正比,与c无关,故B、C错误。自由电子受到的洛伦兹力F=evB=eUa,D正确。答案:D2.[多选]如图所示,带等量异种电荷的平行金属板a、b处于匀强磁场中,磁场方向垂直纸面向里。不计重力的带电粒子沿OO′方向从左侧垂直于电磁场入射,从右侧射出a、b板间区域时动能比入射时小;要使粒子射出a、b板间区域时的动能比入射时大,可采用的措施是()A.适当减小两金属板的正对面积B.适当增大两金属板间的距离C.适当减小匀强磁场的磁感应强度D.使带电粒子的电性相反解析:在这个复合场中,动能逐渐减小,说明电场力做负功,因洛伦兹力不做功,则电场力小于洛伦兹力,当减小正对面积时,由C=εrS4πkd,C=QU,E=Ud得场强E=4πkQεrS,则S减小,Q不变,E增大,电场力变大,当电场力大于洛伦兹力时,粒子向电场力方向偏转,电场力做正功,射出时动能变大,A项正确。当增大两板间距离时,场强不变,所以B项错误。当减小磁感应强度时,洛伦兹力减小,可能小于电场力,所以C项正确。当改变粒子电性时,其所受电场力、洛伦兹力大小不变,方向均反向,所以射出时动能仍然减小,故D项错误。答案:AC3.如图为一种改进后的回旋加速器示意图,其中盒缝间的加速电场场强大小恒定,且被限制在AC板间,虚线中间不需加电场,如图所示,带电粒子从P0处以速度v0沿电场线方向射入加速电场,经加速后再进入D形盒中的匀强磁场做匀速圆周运动。对这种改进后的回旋加速器,下列说法正确的是()A.带电粒子每运动一周被加速两次B.带电粒子每运动一周P1P2=P3P4C.加速粒子的最大速度与D形盒的尺寸有关D.加速电场方向需要做周期性的变化解析:带电粒子只有经过A、C板间时被加速,即带电粒子每运动一周被加速一次,电场的方向没有改变,只在A、C间加速,故A、D错误。根据r=mvqB得,P1P2=2(r2-r1)=2mΔvqB,因为每转一圈被加速一次,根据v22-v12=2ad,知每转一圈,速度的变化量不等,且v4-v3v2-v1,则P1P2P3P4,故B错误。当粒子从D形盒中出来时,速度最大,根据r=mvqB得,v=qBrm,知加速粒子的最大速度与D形盒的尺寸有关,故C正确。答案:C4.[多选]如图所示,空间存在水平向左的匀强电场和垂直纸面向里的水平匀强磁场。在该区域中,有一个竖直放置的光滑绝缘圆环,环上套有一个带正电的小球。O点为圆环的圆心,a、b、c、d为圆环上的四个点,a点为最高点,c点为最低点,b、O、d三点在同一水平线上。已知小球所受电场力与重力大小相等。现将小球从环的顶端a点由静止释放,下列判断正确的是()A.小球能越过d点并继续沿环向上运动B.当小球运动到d点时,不受洛伦兹力C.小球从d点运动到b点的过程中,重力势能减小,电势能减小D.小球从b点运动到c点的过程中,经过弧bc中点时速度最大解析:电场力与重力大小相等,则二者的合力指向左下方45°,由于合力是恒力,故类似于新的重力,所以ad弧的中点相当于竖直平面圆环的等效最高点,关于圆心对称的位置(即bc弧的中点)就是等效最低点,速度最大;由于a、d两点关于等效最高点与等效最低点的连线对称,若从a点静止释放,最高运动到d点,故A错误;当小球运动到d点时,速度为零,故不受洛伦兹力,故B正确;由于d、b等高,故小球从d点运动到b点的过程中,重力势能不变,故C错误;由于等效重力指向左下方45°,由于弧bc中点是等效最低点,故小球从b点运动到c点的过程中,经过弧bc中点时速度最大,故D正确。答案:BD5.[多选](2019·银川模拟)如图所示,竖直虚线边界左侧为一半径为R的光滑半圆轨道,O为圆心,A为最低点,C为最高点,右侧同时存在竖直向上的匀强电场和垂直纸面向外的匀强磁场。一电荷量为q、质量为m的带电小球从半圆轨道的最低点A以某一初速度开始运动恰好能到最高点C,进入右侧区域后恰好又做匀速圆周运动回到A点。空气阻力不计,重力加速度为g。则()A.小球在最低点A开始运动的初速度大小为5gRB.小球返回A点后可以第二次到达最高点CC.小球带正电,且电场强度大小为mgqD.匀强磁场的磁感应强度大小为mqgR解析:小球恰能经过最高点C,则mg=mvC2R,解得vC=gR,从A到C由动能定理:-mg·2R=12mvC2-12mvA2,解得vA=5gR,选项A正确;小球在复合场中以速度gR做匀速圆周运动,再次过A点时的速度为gR,则小球不能第二次到达最高点C,选项B错误;小球在复合场中受向下的重力和向上的电场力而平衡,可知小球带正电,满足mg=qE,解得E=mgq,选项C正确;由qvB=mv2R,其中v=gR,解得B=mqgR,选项D正确。答案:ACD三练提素养——创新性、应用性考法1.[多选]自行车速度计利用霍尔效应传感器获知自行车的运动速率。如图甲所示,自行车前轮上安装一块磁铁,轮子每转一圈,这块磁铁就靠近霍尔传感器一次,传感器会输出一个脉冲电压。图乙为霍尔元件的工作原理图,当磁场靠近霍尔元件时,导体内定向运动的自由电荷在磁场力作用下偏转,最终使导体在与磁场、电流方向都垂直的方向上出现电势差,即为霍尔电势差。下列说法正确的是()A.根据单位时间内的脉冲数和自行车车轮的半径即可获知车速大小B.自行车的车速越大,霍尔电势差越高C.图乙中霍尔元件的电流I是由正电荷定向移动形成的D.如果长时间不更换传感器的电源,霍尔电势差将减小解析:根据单位时间内的脉冲数可知车轮转动的转速,若再已知自行车车轮的半径,根据v=2πrn即可获知车速大小,选项A正确;根据霍尔效应传感器原理可知Udq=B
本文标题:(课标通用)2020新高考物理二轮复习 选择题逐题突破 第六道 选择题涉及的命题点 6.4 带电粒子
链接地址:https://www.777doc.com/doc-8338371 .html