您好,欢迎访问三七文档
2018-2019学年山东省临沂市平邑县九年级(上)期末数学模拟试卷一.选择题(共10小题,满分27分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACBB.∠ADB=∠ABCC.AB2=AD•ACD.=3.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°4.甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中()A.甲获胜的可能更大B.甲、乙获胜的可能一样大C.乙获胜的可能更大D.由于是随机事件,因此无法估计5.四边形ABCD内接于圆,∠A、∠B、∠C、∠D的度数比可能是()A.1:3:2:4B.7:5:10:8C.13:1:5:17D.1:2:3:46.下列关于x的方程中一定没有实数根的是()A.x2﹣x﹣1=0B.4x2﹣6x+9=0C.x2=﹣xD.x2﹣mx﹣2=07.如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将△ABC绕点P顺时针方向旋转90°,得到△A′B′C′,则点P的坐标为()A.(0,4)B.(1,1)C.(1,2)D.(2,1)8.抛物线y=x2﹣4x+4的顶点坐标为()A.(﹣4,4)B.(﹣2,0)C.(2,0)D.(﹣4,0)9.如图,点A的坐标为A(8,0),点B在y轴正半轴上,且AB=10,点P是△AOB外接圆上一点,且∠BOP=45°,则点P的坐标为()A.(7,7)B.(7,7)C.(5,5)D.(5,5)10.若一次函数y=kx+b与反比例函数y=的图象如图所示,则关于x的不等式kx+b﹣≤﹣2的解集为()A.0<x≤2或x≤﹣4B.﹣4≤x<0或x≥2C.≤x<0或xD.x或0二.填空题(共8小题,满分32分,每小题4分)11.如图,正六边形ABCDEF内接于⊙O.若直线PA与⊙O相切于点A,则∠PAB=.12.如图,在等边△ABC中,AB=10,D是BC的中点,将△ABD绕点A旋转后得到△ACE,则线段DE的长度为.13.在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是.14.小莉抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果她第四次抛硬币,那么硬币正面朝上的概率为.15.已知圆锥的底面半径为3,母线长为6,则此圆锥侧面展开图的圆心角是.16.如图,AB是⊙O的直径,AB=10,点M在⊙O上,∠MAB=30°,N是弧MB的中点,P是直径AB上的一动点,若MN=2,则△PMN周长的最小值为.17.如图,在平面直角坐标系xOy中,点A,B在双曲线y=(k是常数,且k≠0)上,过点A作AD⊥x轴于点D,过点B作BC⊥y轴于点C,已知点A的坐标为(4,),四边形ABCD的面积为4,则点B的坐标为.18.如图,△ABC中,∠ACB=90°,AC=8cm,BC=6cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<15),连接DE,当△BDE是直角三角形时,t的值为.三.解答题(共7小题,满分58分)19.解方程.(1)x2﹣5x=0;(2)x2﹣3x=1;(3)(x﹣3)(x+3)=2x.20.如图,在平面直角坐标系中,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC绕原点O逆时针方向旋转90°得到的△A'B'C';并直接写出点A',B',C'的坐标:A',B',C'.(2)在(1)的条件下,求在旋转的过程中,点A所经过的路径长,(结果保留π)21.如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.(1)求证:DE是⊙O的切线;(2)当⊙O半径为3,CE=2时,求BD长.22.如图,已知在△ABC中,AB=AC,D为CB延长线上一点,E为BC延长线上一点,且满足AB2=DB•CE.求证:△ADB∽△EAC.23.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点.(1)利用图中的条件,求反比例函数和一次函数的解析式.(2)求△AOB的面积.(3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.24.如图,为美化环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)用含a的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽.25.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为;(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.参考答案一.选择题(共10小题,满分27分)1.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:B.2.【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.3.【解答】解:∵OB=OC∴∠BOC=180°﹣2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°故选:B.4.【解答】解:一人掷一次,两人所投掷骰子的点数和共有36种等可能的结果数,其中点数和大于7的结果数为15,所以甲胜的概率==;乙胜的概率==,所以乙获胜的可能更大.故选:C.5.【解答】解:A、1+2≠3+4,所以A选项不正确;B、7+10≠5+8,所以B选项不正确;C、13+5=1+17,所以C选项正确;D、1+3≠2+4,所以D选项不正确.故选:C.6.【解答】解:A、△=5>0,方程有两个不相等的实数根;B、△=﹣108<0,方程没有实数根;C、△=1=0,方程有两个相等的实数根;D、△=m2+8>0,方程有两个不相等的实数根.故选:B.7.【解答】解:由图知,旋转中心P的坐标为(1,2),故选:C.8.【解答】解:∵y=x2﹣4x+4=(x﹣2)2,∴抛物线顶点坐标为(2,0).故选:C.9.【解答】解:作PH⊥x轴于H,连结PA、PB,∵∠AOB=90°,∴AB为△AOB外接圆的直径,∴∠BPA=90°,∵AB=10,∠BAP=∠BOP=45°,∴PA=5,设OH=t,则PH=t,AH=8﹣t,在Rt△PHA中,∵PH2+AH2=PA2,即t2+(8﹣t)2=(5)2,解得,t1=1(舍去),t2=7,∴点P的坐标为(7,7),故选:A.10.【解答】解:将(﹣2,0)、(0,﹣2)代入y=kx+b,,解得:,∴一次函数解析式为y=﹣x﹣2.当x=2时,y=﹣x﹣2=﹣4,∴一次函数图象与反比例函数图象的一个交点坐标为(2,﹣4),∴k=2×(﹣4)=﹣8,∴反比例函数解析式为y=﹣.将一次函数图象向上移2个单位长度得出的新的函数解析式为y=﹣x.联立新一次函数及反比例函数解析式成方程组,,解得:,.观察函数图象可知:当﹣2<x<0或x>2时,新一次函数图象在反比例函数图象下方,∴不等式﹣x≤﹣的解集为﹣2≤x<0或x≥2.故选:C.二.填空题(共8小题,满分32分,每小题4分)11.【解答】解:连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°.故答案为:30°.12.【解答】解:∵△ABC为等边三角形,∴AB=BC=10,∠B=∠BAC=60°,∵D是BC的中点,即BD=DC=BC=5,∴AD⊥BC,∠BAD=30°,∴AD=BD=5,∵△ABD绕点A旋转后得到△ACE,∴∠DAE=∠BAC=60°,AD=AE,∴△ADE为等边三角形,∴DE=AD=5.故答案为5.13.【解答】解:∵∠ACB=90°,AC=BC=1,∴AB==,∴点B经过的路径长==;由图可知,S阴影=S△ADE+S扇形ABD﹣S△ABC,由旋转的性质得,S△ADE=S△ABC,∴S阴影=S扇形ABD==.故答案为:;.14.【解答】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,故答案为:.15.【解答】解:∵圆锥底面半径是3,∴圆锥的底面周长为6π,设圆锥的侧面展开的扇形圆心角为n°,=6π,解得n=180.故答案为180°.16.【解答】解:作点N关于AB的对称点N′,连接OM、ON、ON′、MN′,则MN′与AB的交点即为PM+PN的最小时的点,PM+PN的最小值=MN′,∵∠MAB=30°,∴∠MOB=2∠MAB=2×30°=60°,∵N是弧MB的中点,∴∠BON=∠MOB=×60°=30°,由对称性,∠N′OB=∠BON=30°,∴∠MON′=∠MOB+∠N′OB=60°+30°=90°,∴△MON′是等腰直角三角形,∴MN′=OM=×5=5,即PM+PN=5,∴△PMN周长的最小值=5+2.故答案为5+2.17.【解答】解:连接BO、BD,∵点A在双曲线y=(k是常数,且k≠0)上,点A的坐标为(4,),∴k=4×=6,又∵BC⊥y轴于点C,∴BC∥OD,∴△BOC的面积=△BCD的面积=3,又∵四边形ABCD的面积为4,∴△ABD的面积=4﹣3=1,设B(a,),∵AD⊥x轴于点D,A的坐标为(4,),∴AD=,∵××(4﹣a)=1,解得a=,∴=,∴点B的坐标为(,).故答案为:(,).18.【解答】解:当DE⊥AB于点E,设t秒时,E点没有到达B点前,∠BED=90°,∵∠B=∠B,∠ACB=∠BED=90°,∴△BED∽△BCA,∴=,∵∠ACB=90°,AC=8cm,BC=6cm,D为BC的中点,∴AB=10cm,BD=3cm,∴=,解得:t=8.2,设t秒时,当E点到达B点后,∠BED=90°,∵∠B=∠B,∠ACB=∠BED=90°,∴△BED∽△BCA,∴=,∵∠ACB=90°,AC=8cm,BC=6cm,D为BC的中点,∴AB=10cm,BD=3cm,∴=,解得:t=11.8,当DE⊥CB于DE,设t秒时,∠BDE=90°,∵DE∥AC,∴△BED∽△BAC,∴==,∵∠ACB=90°,AC=8cm,BC=6cm,D为BC的中点,∴AB=10cm,BD=3cm,∴=解得:t=5,综上所述:t的值为5s或8.2s或11.8s.故答案为:5s或8.2s或11.8s.三.解答题(共7小题,满分58分)19.【解答】解:(1)∵x2﹣5x=0,∴x(x﹣5)=0,则x=0或x﹣5=0,∴x=0或x=5;(2)∵x2﹣3x=1,∴x2﹣3x﹣1=0,∵a=1、b=﹣3、c=﹣1,∴△=9﹣4×1×(﹣1)=13>0,则x=;(3)方程整理可得x2﹣2x﹣9=0,∵a=1、b=﹣2、c=﹣9,∴△=4﹣4×1×(﹣9)=40>0,则x==1±.20.【解答】解:(1)如图所示,△A'B'C'即为所求.由图知,A′(﹣4,﹣3),B′(﹣2,﹣5),C′(﹣1,﹣2),故答案为:(﹣4,﹣3),(﹣2,﹣5),(﹣1,﹣2);(2)连接OA,则OA==5,所以点A所走的
本文标题:山东省临沂市平邑县2018-2019学年九年级数学上学期期末模拟试卷(pdf)
链接地址:https://www.777doc.com/doc-8355960 .html