您好,欢迎访问三七文档
2018-2019学年山东省济宁市曲阜市九年级(上)期末数学模拟试卷一.选择题(共10小题,满分27分)1.如图图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.2.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数3.函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2D.y=﹣2(x+1)2﹣24.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的大小为()A.40°B.50°C.80°D.100°5.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A.1:3B.1:4C.1:5D.1:96.下列关于x的方程中一定没有实数根的是()A.x2﹣x﹣1=0B.4x2﹣6x+9=0C.x2=﹣xD.x2﹣mx﹣2=07.对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A.1B.2C.3D.48.点M(a,2a)在反比例函数y=的图象上,那么a的值是()A.4B.﹣4C.2D.±29.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.,πC.2,D.2,10.方程x2+4x﹣1=0的根可视为函数y=x+4的图象与函数的图象交点的横坐标,那么用此方法可推断出:当m取任意正实数时,方程x3+mx﹣1=0的实根x0一定在()范围内.A.﹣1<x0<0B.0<x0<1C.1<x0<2D.2<x0<3二.填空题(共5小题,满分15分,每小题3分)11.在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90°的对应点的坐标为.12.设a,b是方程x2+x﹣2011=0的两个实数根,则a2+2a+b的值为.13.抛掷一枚均匀的硬币,前5次都正面朝上,则抛掷第50次正面朝上的概率是.14.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.15.如图为二次函数y=ax2+bx+c(a≠0)的图象,下列说法正确的有.①abc>0;②a+b+c>0;③b2﹣4ac<0④当x>1时,y随x的增大而增大;⑤方程ax2+bx+c=0(a≠0)的根是x1=﹣1,x2=3.三.解答题(共7小题,满分55分)16.解方程:x2﹣6x+4=0(用配方法)17.如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.(1)求证:OD∥AC;(2)若BC=8,DE=3,求⊙O的直径.18.淮北市某中学七年级一位同学不幸得了重病,牵动了全校师生的心,该校开展了“献爱心”捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该校能收到多少捐款?19.如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.20.在甲、乙两个不透明的布袋中,甲袋装有3个完全相同的小球,分别标有数字0,1,2;乙袋装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,小球上的数字记为x,再从乙袋中随机抽取一个小球,小球上的数字记为y,设点M的坐标为(x,y).(1)用树形图或列表法求出点M的所有等可能个数;(2)分别求点M在函数y=﹣x+1图象上的概率和点M在第四象限的概率.21.我们定义:如图1,在△ABC看,把AB点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.22.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为;(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.参考答案一.选择题(共10小题,满分27分)1.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项正确;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:A.2.【解答】解:A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选:C.3.【解答】解:抛物线y=﹣2x2的顶点坐标为(0,0),把(0,0)先向右平移1个单位,再向下平移2个单位所得对应点的坐标为(1,﹣2),所以平移后的抛物线解析式为y=﹣2(x﹣1)2﹣2.故选:B.4.【解答】解:∵OB=OC∴∠BOC=180°﹣2∠OCB=100°,∴由圆周角定理可知:∠A=∠BOC=50°故选:B.5.【解答】解:∵OB=3OB′,∴,∵以点O为位似中心,将△ABC缩小后得到△A′B′C′,∴△A′B′C′∽△ABC,∴=.∴=,故选:D.6.【解答】解:A、△=5>0,方程有两个不相等的实数根;B、△=﹣108<0,方程没有实数根;C、△=1=0,方程有两个相等的实数根;D、△=m2+8>0,方程有两个不相等的实数根.故选:B.7.【解答】解:y=﹣x2+2x=﹣(x﹣1)2+1,故①它的对称轴是直线x=1,正确;②∵直线x=1两旁部分增减性不一样,∴设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1或y2<y1或y2=y1,错误;③当y=0,则x(﹣x+2)=0,解得:x1=0,x2=2,故它的图象与x轴的两个交点是(0,0)和(2,0),正确;④∵a=﹣1<0,∴抛物线开口向下,∵它的图象与x轴的两个交点是(0,0)和(2,0),∴当0<x<2时,y>0,正确.故选:C.8.【解答】解:∵点M(a,2a)在反比例函数y=的图象上.∴2a=.∴解得:a=±2,故选:D.9.【解答】解:如图所示,连接OC、OB,∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OA=OB,∴△BOC是等边三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×=2,的长==;故选:D.10.【解答】解:∵方程x3+mx﹣1=0变形为x2+m﹣=0,∴方程x3+mx﹣1=0的根可视为函数y=x2+m的图象与函数的图象交点的横坐标,∵当m取任意正实数时,函数y=x2+m的图象过第一、二象限,函数的图象分别在第一、三象限,∴它们的交点在第一象限,即它们的交点的横坐标为正数,∵当m取任意正实数时,函数y=x2+m的图象沿y轴上下平移,且总在x轴上方,抛物线顶点越低,与函数的图象的交点的横坐标越大,当m=0时,y=x2与的交点A的坐标为(1,1),∴当m取任意正实数时,方程x3+mx﹣1=0的实根x0一定在0<x0<1的范围内.故选:B.二.填空题(共5小题,满分15分,每小题3分)11.【解答】解:如图,线段OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标为(﹣3,2),点A′在第二象限.故答案为(﹣3,2).12.【解答】解:∵a是方程x2+x﹣2011=0的实数根,∴a2+a﹣2011=0,即a2=﹣a+2011,∴a2+2a+b=﹣a+2011+2a+b=a+b+2011,∵a,b是方程x2+x﹣2011=0的两个实数根,∴a+b=﹣1,∴a2+2a+b=﹣1+2011=2010.故答案为2010.13.【解答】解:∵硬币由正面朝上和朝下两种情况,并且是等可能,∴第50次正面朝上的概率是,故答案为:.14.【解答】解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为:2.15.【解答】解:①∵抛物线开口向上,对称轴在y轴右侧,与y轴交于负半轴,∴a>0,﹣>0,c<0,∴b<0,∴abc>0,结论①正确;②∵当x=1时,y<0,∴a+b+c<0,结论②错误;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,结论③错误;④∵抛物线与x轴交于点(﹣1,0),(3,0),∴抛物线的对称轴为直线x=1.∵抛物线开口向上,∴当x>1时,y随x的增大而增大,结论④正确;⑤∵抛物线与x轴交于点(﹣1,0),(3,0),∴方程ax2+bx+c=0(a≠0)的根是x1=﹣1,x2=3,结论⑤正确.故答案为:①④⑤.三.解答题(共7小题,满分55分)16.【解答】解:由原方程移项,得x2﹣6x=﹣4,等式的两边同时加上一次项系数的一半的平方,得x2﹣6x+9=﹣4+9,即(x﹣3)2=5,∴x=±+3,∴x1=+3,x2=﹣+3.17.【解答】(1)证明:∵AB是⊙O的直径,∴∠C=90°,∵OD⊥BC,∴∠OEB=∠C=90°,∴OD∥AC;(2)解:令⊙O的半径为r,根据垂径定理可得:BE=CE=BC=4,由勾股定理得:r2=42+(r﹣3)2,解得:r=,所以⊙O的直径为.18.【解答】解:(1)捐款增长率为x,根据题意得:10000(1+x)2=12100,解得:x1=0.1,x2=﹣2.1(舍去).则x=0.1=10%.答:捐款的增长率为10%.(2)根据题意得:12100×(1+10%)=13310(元),答:第四天该校能收到的捐款是13310元.19.【解答】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.20.【解答】解:(1)列表如下:012﹣1(0,﹣1)(1,﹣1)(2,﹣1)﹣2(0,﹣2)(1,﹣2)(2,﹣2)0(0,0)(1,0)(2,0)所以点M的所有等可能的个数是9;(2)满足点(x,y)落在函数y=﹣x+1图象上的结果有2个,即(2,﹣1),(1,0),所以点M(x,y)在函数y=﹣x+1图象上的概率是,因为点(1,﹣1),(2,﹣1),(1,﹣2)和(2,﹣2)落在第四象限,所以点M在第四象限的概率是.21.
本文标题:山东省济宁市曲阜市2018-2019学年九年级数学上学期期末模拟试卷(pdf)
链接地址:https://www.777doc.com/doc-8356032 .html