您好,欢迎访问三七文档
2018-2019学年山东省滨州市沾化县九年级(上)期末数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.《习近平总书记系列重要讲话读本》中讲到“绿水青山就是金山银山”,我们要尊重自然、顺应自然、保护自然的理念,贯彻节约资源和保护环境的基本国策.在下列环保标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.已知方程2x2﹣x﹣3=0的两根为x1,x2,那么+=()A.﹣B.C.3D.﹣33.把二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列变形正确的是()A.y=(x+1)2+3B.y=(x﹣2)2+3C.y=(x﹣1)2+5D.y=(x﹣1)2+34.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.5.如图,⊙O中,CD是切线,切点是D,直线CO交⊙O于B、A,∠A=20°,则∠C的度数是()A.25°B.65°C.50°D.75°6.如图,已知⊙O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为()A.6B.8C.5D.57.独山县开展关于精准扶贫、精准扶贫的决策部署以来,某贫困户2014年人均纯收入为2620元,经过帮扶到2016年人均纯收入为3850元,设该贫困户每年纯收入的平均增长率为x,则下面列出的方程中正确的是()A.2620(1﹣x)2=3850B.2620(1+x)=3850C.2620(1+2x)=3850D.2620(1+x)2=38508.如图,8×8方格纸上的两条对称轴EF,MN相交于中心点O,对△ABC分别作下列变换:①先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格;②先以点O为中心作中心对称图形,再以点A的对应点为中心逆时针方向旋转90°;③先以直线MN为轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90度.其中,能将△ABC变换成△PQR的是()A.①②B.①③C.②③D.①②③9.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4B.2C.3D.2.510.在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.如图,若点D与圆心O不重合,∠BAC=25°,则∠DCA的度数()A.35°B.40°C.45°D.65°11.如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A.10B.8C.4D.412.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1B.k≥﹣1C.k>﹣1且k≠0D.k≥﹣1且k≠0二.填空题(共6小题,满分24分,每小题4分)13.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为.14.若实数a,b满足(a2+b2)(a2+b2﹣8)+16=0,则a2+b2=.15.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于(1,0),(3,0)两点,请写出一个满足y<0的x的值.16.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加m.17.如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、N两点,若点M的坐标是(﹣4,﹣2),则弦MN的长为.18.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1,下列结论①abc>0;②4a+2b+c>0;③4ac﹣b2<8a;④b>c.其中含所有结论正确的个数为个.三.解答题(共6小题,满分60分,每小题10分)19.解方程:x(x﹣1)=4x+6.20.如图,在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB1C1,并直接写出点B1、C1的坐标.(2)求线段AB所扫过的图形的面积.21.如图,一段圆弧与长度为1的正方形网格的交点是A、B、C.(1)请完成以下操作:①以点O为原点,垂直和水平方向为轴,网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD;(2)请在(1)的基础上,完成下列填空:⊙D的半径为;点(6,﹣2)在⊙D;(填“上”、“内”、“外”)∠ADC的度数为.22.某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于50元,设每件商品的售价上涨x元(x为整数),每周的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?(3)每件商品的售价定为多少元时,每周的利润恰好是2145元?23.如图,在Rt△ABC中,∠BAC=90°,以AB为直径作⊙O交BC于点D,E为AC的中点,连接DE并延长交BA的延长线于点F.(1)求证:DE是⊙O的切线;(2)若∠F=30°,⊙O的半径为2,求图中阴影部分的面积.24.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为;(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.参考答案一.选择题(共12小题,满分36分,每小题3分)1.【解答】解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、既是轴对称图形又是中心对称图形.故本选项正确;C、不是轴对称图形,不是中心对称图形.故本选项错误;D、不是轴对称图形,不是中心对称图形.故本选项错误.故选:B.2.【解答】解:根据题意得x1+x2=,x1x2=﹣,所以+===﹣.故选:A.3.【解答】解:y=x2﹣2x+4,=x2﹣2x+1+3,=(x﹣1)2+3.故选:D.4.【解答】解:根据题意,ab>0,即a、b同号,当a>0时,b>0,y=ax2与开口向上,过原点,y=ax+b过一、二、三象限;此时,没有选项符合,当a<0时,b<0,y=ax2与开口向下,过原点,y=ax+b过二、三、四象限;此时,D选项符合,故选:D.5.【解答】解:连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∠COD=2∠A=40°,∴∠C=90°﹣40°=50°,故选:C.6.【解答】解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD=6,∵AE为⊙O的直径,∴∠ABE=90°,∴AB===8,故选:B.7.【解答】解:如果设该贫困户每年纯收入的平均增长率为x,那么根据题意得:2620(1+x)2,列出方程为:2620(1+x)2=3850.故选:D.8.【解答】解:根据题意分析可得:①②③都可以使△ABC变换成△PQR.故选:D.9.【解答】解:连接DO,∵PD与⊙O相切于点D,∴∠PDO=90°,∵∠C=90°,∴DO∥BC,∴△PDO∽△PCB,∴===,设PA=x,则=,解得:x=4,故PA=4.故选:A.10.【解答】解:连接BC,∵AB是直径,∴∠ACB=90°,∵∠BAC=25°,∴∠B=90°﹣∠BAC=90°﹣25°=65°,根据翻折的性质,所对的圆周角为∠B,所对的圆周角为∠ADC,∴∠ADC+∠B=180°,∴∠B=∠CDB=65°,∴∠DCA=∠CDB﹣∠A=65°﹣25°=40°.故选:B.11.【解答】解:∵直线AB与⊙O相切于点A,∴OA⊥AB,又∵CD∥AB,∴AO⊥CD,记垂足为E,∵CD=8,∴CE=DE=CD=4,连接OC,则OC=OA=5,在Rt△OCE中,OE===3,∴AE=AO+OE=8,则AC===4,故选:D.12.【解答】解:∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0∴k>﹣1∵抛物线y=kx2﹣2x﹣1为二次函数∴k≠0则k的取值范围为k>﹣1且k≠0.二.填空题(共6小题,满分24分,每小题4分)13.【解答】解:∵△AOB绕点O按逆时针方向旋转到△COD的位置,∴对应边OB、OD的夹角∠BOD即为旋转角,∴旋转的角度为90°.故答案为:90°.14.【解答】解:令a2+b2=x,则原方程可化为:x(x﹣8)+16=0,∴x2﹣8x+16=0,即(x﹣4)2=0,∴x﹣4=0,解得x=4,即a2+b2=4,故答案为:4.15.【解答】解:∵在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于(1,0),(3,0)两点,∴当y<0的x的取值范围是:1<x<3,∴x的值可以是2.故答案是:2(答案不唯一).16.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2=﹣0.5x2+2,解得:x=±2,所以水面宽度增加到4米,比原先的宽度当然是增加了(4﹣4)米,故答案为:4﹣4.17.【解答】解:分别过点M、N作x轴的垂线,过点A作AB⊥MN,连接AN设⊙A的半径为r.则AN=OA=r,AB=2,∵AB⊥MN,∴BM=BN,∴BN=4﹣r;则在Rt△ABN中,根据勾股定理,得AB2+BN2=AN2,即:22+(4﹣r)2=r2,解得r=2.5,则N到y轴的距离为1,又∵点N在第三象限,∴N的坐标为(﹣1,﹣2);∴MN=3;故答案为:3.18.【解答】解:①由抛物线的对称轴可知:>0,∴ab<0,∵c<0,∴abc>0,故①正确;②由题意可知:(﹣1,0)关于直线x=1的对称点为(3,0),∴令x=2,y=4a+2b+c<0,故②错误;③x=1时,y==﹣2,∴4ac﹣b2=﹣8a<8a,故③正确;④由题意可知:=1,a>0,b=﹣2a,令x=﹣1,y=0,∴a﹣b+c=0,∴a+2a+c=0,∴c=﹣3a∴b﹣c=﹣2a+3a=a>0,∴b>c,故④正确;故答案为:3三.解答题(共6小题,满分60分,每小题10分)19.【解答】解:x2﹣x=4x+6x2﹣5x﹣6=0(x﹣6)(x+1)=0x=6或x=﹣120.【解答】解:(1)如图所示,△AB1C1即为所求;由图可知点B1的坐标为(4,﹣2)、C1的坐标为(1,﹣3);(2)∵AB==3,且∠BAB1=90°,∴线段AB所扫过的图形的面积为=π.21.【解答】解:(1)①平面直角坐标系如图所示:②圆心点D,如图所示;(2)⊙D的半径=AD==2,∵点(6,﹣2)到圆心D的距离==2=半径,∴点(6,﹣2)在⊙D上.∵D(2,0),C(6,2),A(0,4),∴OD=CE,OA=DE,∵∠AOD=∠DEC,∴△AOD≌△DEC(SAS),∴∠OAD=∠EDC,∵∠OAD+∠ADO=90°,∴∠ADC=90°,故答案为:2,上,90°.22.【解答】解:(1)由题意得:y=(40+x﹣30)(180﹣5x)=﹣5x2+130x+1800(
本文标题:山东省滨州市沾化县2018-2019学年九年级数学上学期期末模拟试卷(pdf)
链接地址:https://www.777doc.com/doc-8357373 .html