您好,欢迎访问三七文档
1第4讲随机事件的概率基础知识整合1.概率(1)在相同条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有□01稳定性.我们把这个常数叫做随机事件A的□02概率,记作□03P(A).(2)频率反映了一个随机事件出现的频繁程度,但频率是随机的,而□04概率是一个确定的值,因此,人们用□05概率来反映随机事件发生的可能性的大小,有时也用□06频率作为随机事件概率的估计值.(3)概率的几个基本性质①概率的取值范围:□070≤P(A)≤1.②必然事件的概率:P(A)=□081.③不可能事件的概率:P(A)=□090.④概率的加法公式如果事件A与事件B互斥,则P(A∪B)=□10P(A)+P(B).⑤对立事件的概率若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=□111,P(A)=□121-P(B).2.事件的关系与运算21.从集合的角度理解互斥事件和对立事件(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.(2)事件A的对立事件A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.2.概率加法公式的推广当一个事件包含多个结果且各个结果彼此互斥时,要用到概率加法公式的推广,即P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).1.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北3四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是()A.互斥事件但非对立事件B.对立事件但非互斥事件C.互斥事件也是对立事件D.以上都不对答案A解析由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件.故选A.2.(2019·宁夏检测)抽查10件产品,设事件A为“至少有2件次品”,则事件A的对立事件为()A.至多有2件次品B.至多有1件次品C.至多有2件正品D.至少有2件正品答案B解析∵“至少有n个”的反面是“至多有n-1个”,又∵事件A“至少有2件次品”,∴事件A的对立事件为“至多有1件次品”.3.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,事件“至少有一名女生”与事件“全是男生”()A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件,也不是对立事件答案C4.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是0.05和0.03,则抽检一件是正品(甲级品)的概率为()A.0.95B.0.97C.0.92D.0.08答案C解析记抽检的产品是甲级品为事件A,是乙级品为事件B,是丙级品为事件C,这三个事件彼此互斥,因此所求概率为P(A)=1-P(B)-P(C)=1-0.05-0.03=0.92.5.一个地区从某年起几年之内的新生婴儿数及其中的男婴数如下:这一地区男婴出生的概率约是________(保留四位小数).答案0.5173解析男婴出生的频率依次约是:0.5200,0.5173,0.5173,0.5173.由于这些频率非常接近0.5173,因此这一地区男婴出生的概率约为0.5173.46.在一次班级聚会上,某班到会的女同学比男同学多6人,从这些同学中随机挑选一人表演节目.若选到女同学的概率为23,则这班参加聚会的同学的人数为________.答案18解析设女同学有x人,则该班到会的共有(2x-6)人,所以x2x-6=23,得x=12,故该班参加聚会的同学有18人.核心考向突破考向一事件的概念例1从6件正品与3件次品中任取3件,观察正品件数与次品件数,判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件.(1)“恰好有1件次品”和“恰好有2件次品”;(2)“至少有1件次品”和“全是次品”;(3)“至少有2件次品”和“至多有1件次品”.解从6件正品与3件次品中任取3件,共有4种情况:①3件全是正品;②2件正品1件次品;③1件正品2件次品;④全是次品.(1)“恰好有1件次品”即“2件正品1件次品”;“恰好有2件次品”即“1件正品2件次品”,它们是互斥事件但不是对立事件.(2)“至少有1件次品”包括“2件正品1件次品”“1件正品2件次品”“全是次品”3种情况,它与“全是次品”既不是互斥事件也不是对立事件.(3)“至少有2件次品”包括”1件正品2件次品”“全是次品”2种情况;“至多有1件次品”包括“2件正品1件次品”“全是正品”2种情况,它们既是互斥事件也是对立事件.触类旁通事件间关系的判断方法对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件,这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所求事件包含哪几个试验结果,从而断定所给事件的关系.即时训练1.(2019·湖北十市联考)从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“都是红球”C.“至少有一个黑球”与“至少有一个红球”D.“恰有一个黑球”与“恰有两个黑球”答案D解析A中的两个事件是包含关系,不是互斥事件;B中的两个事件是对立事件;C中的两个事件都包含“一个黑球一个红球”的事件,不是互斥关系;D中的两个事件是互斥而不对立的关系.5考向二随机事件的概率与频率例2(2018·北京高考)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)解(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.第四类电影中获得好评的电影部数是200×0.25=50,故所求概率为502000=0.025.(2)设“随机选取1部电影,这部电影没有获得好评”为事件B.没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628(部).由古典概型概率公式得P(B)=16282000=0.814.(3)增加第五类电影的好评率,减少第二类电影的好评率.触类旁通概率和频率的关系概率可看成频率在理论上的稳定值,它从数量上反映了随机事件发生的可能性的大小,它是频率的科学抽象,当试验次数越来越多时频率向概率靠近,只要次数足够多,所得频率就近似地当作随机事件的概率.即时训练2.(2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:6以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.解(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y=6×450-4×450=900;若最高气温位于区间[20,25),则Y=6×300+2(450-300)-4×450=300;若最高气温低于20,则Y=6×200+2(450-200)-4×450=-100,所以,Y的所有可能值为900,300,-100.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8,因此Y大于零的概率的估计值为0.8.考向三互斥、对立事件的概率角度1互斥事件的概率例3(2019·唐山模拟)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.解(1)设A表示事件“赔付金额为3000元”,B表示事件“赔付金额为4000元”,以频率估计概率,得P(A)=1501000=0.15,P(B)=1201000=0.12.由于投保金额为2800元,赔付金额大于投保金额对应的情形是3000元和4000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4000元”.由已知,样本车辆中车主为新司机的有0.1×1000=100(辆),7而赔付金额为4000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4000元的频率为24100=0.24,由频率估计概率得P(C)=0.24.角度2对立事件的概率例4(2019·扬州模拟)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率).解(1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).(2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P(A1)=20100=15,P(A2)=10100=110.P(A)=1-P(A1)-P(A2)=1-15-110=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.触类旁通求复杂的互斥事件的概率的一般方法(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率求和,运用互斥事件的概率求和公式计算.间接法:先求此事件的对立事件的概率,再用公式PA=1-A,即运用8逆向思维,特别是“至少”“至多”型题目,用间接法就显得较简便.即时训练3.某商场有奖销售中,购满100元商品得1张奖券,多购多得,1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.解(1)P(A)=11000,P(B)=101000=1100,P(C)=501000=120.(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C.∵A,B,C两两互斥,∴P(M)=P(A∪B∪C)=P(
本文标题:2020版高考数学一轮复习 第十一章 计数原理、概率、随机变量及分布列 第4讲 随机事件的概率教案
链接地址:https://www.777doc.com/doc-8463080 .html