您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2019-2020学年高中数学 第2章 概率章末复习课讲义 新人教B版选修2-3
-1-[自我校对]①pi≥0,i=1,2,…,n②i=1npi=1③二点分布④超几何分布⑤P(B|A)=PA∩BPA⑥0≤P(B|A)≤1P(B∪C|A)=P(B|A)+P(C|A)(B,C互斥)⑦P(A∩B)=P(A)·P(B)⑧A与B相互独立,则A与B,A与B,A与B相互独立⑨P(X=k)=Cknpk(1-p)n-k(k=0,1,2,…,n)⑩E(aX+b)=aE(X)+b⑪E(X)=p⑫E(X)=np⑬D(X)=p(1-p)⑭D(X)=np(1-p)⑮D(aX+b)=a2D(X)条件概率条件概率是学习相互独立事件的前提和基础,计算条件概率时,必须弄清欲求的条件概率是在什么条件下发生的概率.-2-求条件概率的主要方法有:(1)利用条件概率公式P(B|A)=PA∩BPA;(2)针对古典概型,可通过缩减基本事件总数求解.【例1】在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.【精彩点拨】本题是条件概率问题,根据条件概率公式求解即可.【解】设“第1次抽到理科题”为事件A,“第2次抽到理科题”为事件B,则“第1次和第2次都抽到理科题”为事件AB.(1)从5道题中不放回地依次抽取2道题的事件数为n(Ω)=A25=20.根据分步乘法计数原理,n(A)=A13×A14=12.于是P(A)=nAnΩ=1220=35.(2)因为n(AB)=A23=6,所以P(AB)=nA∩BnΩ=620=310.(3)法一:由(1)(2)可得,在第1次抽到理科题的条件下,第2次抽到理科题的概率P(B|A)=PA∩BPA=31035=12.法二:因为n(A∩B)=6,n(A)=12,所以P(B|A)=nA∩BnA=612=12.1.掷两颗均匀的骰子,已知第一颗骰子掷出6点,求“掷出点数之和大于或等于10”的概率.-3-【解】设“掷出的点数之和大于或等于10”为事件A,“第一颗骰子掷出6点”为事件B.法一:P(A|B)=PA∩BPB=336636=12.法二:“第一颗骰子掷出6点”的情况有(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共6种,故n(B)=6.“掷出的点数之和大于或等于10”且“第一颗掷出6点”的情况有(6,4),(6,5),(6,6),共3种,即n(A∩B)=3.从而P(A|B)=nA∩BnB=36=12.相互独立事件的概率求相互独立事件一般与互斥事件、对立事件结合在一起进行考查,解答此类问题时应分清事件间的内部联系,在此基础上用基本事件之间的交、并、补运算表示出有关事件,并运用相应公式求解.特别注意以下两公式的使用前提:(1)若A,B互斥,则P(A∪B)=P(A)+P(B),反之不成立.(2)若A,B相互独立,则P(A∩B)=P(A)P(B),反之成立.【例2】甲、乙、丙3位大学生同时应聘某个用人单位的职位,甲、乙两人只有一人被选中的概率为1120,两人都被选中的概率为310,丙被选中的概率为13,且各自能否被选中互不影响.(1)求3人同时被选中的概率;(2)求恰好有2人被选中的概率;(3)求3人中至少有1人被选中的概率.【精彩点拨】根据相互独立事件的概率求解.【解】设甲、乙、丙能被选中的事件分别为A,B,C,则P(A)(1-P(B))+P(B)(1-P(A))=1120,-4-P(A)P(B)=310,∴P(A)=25,P(B)=34,P(C)=13.(1)3人同时被选中的概率P1=P(A∩B∩C)=P(A)·P(B)P(C)=25×34×13=110.(2)恰有2人被选中的概率P2=P(A∩B∩C)+P(A∩B∩C)+P(A∩B∩C)=2360.(3)3人中至少有1人被选中的概率P3=1-P(A∩B∩C)=1-35×14×23=910.2.某同学参加科普知识竞赛,需回答3个问题,竞赛规则规定:答对第1,2,3个问题分别得100分,100分,200分,答错得零分.假设这名同学答对第1,2,3个问题的概率分别为0.8,0.7,0.6.且各题答对与否相互之间没有影响.(1)求这名同学得300分的概率;(2)求这名同学至少得300分的概率.【解】记“这名同学答对第i个问题”为事件Ai(i=1,2,3),则P(A1)=0.8,P(A2)=0.7,P(A3)=0.6.(1)这名同学得300分的概率为:P1=P(A1∩A2∩A3)+P(A1∩A2∩A3)=P(A1)P(A2)P(A3)+P(A1)·P(A2)P(A3)=0.8×0.3×0.6+0.2×0.7×0.6=0.228.(2)这名同学至少得300分的概率为:P2=P1+P(A1∩A2∩A3)=P1+P(A1)P(A2)P(A3)=0.228+0.8×0.7×0.6=0.564.离散型随机变量的分布列、均值和方差1.含义:均值和方差分别反映了随机变量取值的平均水平及其稳定性.2.应用范围:均值和方差在实际优化问题中应用非常广泛,如同等资金下比-5-较收益的高低、相同条件下比较质量的优劣、性能的好坏等.3.求解思路:应用时,先要将实际问题数学化,然后求出随机变量的概率分布列.对于一般类型的随机变量,应先求其分布列,再代入公式计算,此时解题的关键是概率的计算.计算概率时要结合事件的特点,灵活地结合排列组合、古典概型、独立重复试验概率、互斥事件和相互独立事件的概率等知识求解.若离散型随机变量服从特殊分布(如二点分布、二项分布等),则可直接代入公式计算其数学期望与方差.【例3】甲、乙、丙三支足球队进行比赛,根据规则:每支队伍比赛两场,共赛三场,每场比赛胜者得3分,负者得0分,没有平局.已知乙队胜丙队的概率为15,甲队获得第一名的概率为16,乙队获得第一名的概率为115.(1)求甲队分别胜乙队和丙队的概率P1,P2;(2)设在该次比赛中,甲队得分为ξ,求ξ的分布列及数学期望、方差.【精彩点拨】(1)通过列方程组求P1和P2;(2)由题意求出甲队得分ξ的可能取值,然后再求出ξ的分布列,最后再求出数学期望和方差.【解】(1)设“甲队胜乙队”的概率为P1,“甲队胜丙队”的概率为P2.根据题意,甲队获得第一名,则甲队胜乙队且甲队胜丙队,所以甲队获得第一名的概率为P1×P2=16.①乙队获得第一名,则乙队胜甲队且乙队胜丙队,所以乙队获得第一名的概率为(1-P1)×15=115.②解②,得P1=23,代入①,得P2=14,所以甲队胜乙队的概率为23,甲队胜丙队的概率为14.(2)ξ的可能取值为0,3,6.当ξ=0时,甲队两场比赛皆输,其概率为P(ξ=0)=1-23×1-14=14;当ξ=3时,甲队两场只胜一场,其概率为P(ξ=3)=23×1-14+14×1-23=712;-6-当ξ=6时,甲队两场皆胜,其概率为P(ξ=6)=23×14=16.所以ξ的分布列为ξ036P1471216所以E(ξ)=0×14+3×712+6×16=114.D(ξ)=0-1142×14+3-1142×712+6-1142×16=5916.3.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;(2)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.【解】(1)由已知,有P(A)=C22C23+C23C23C48=635.所以,事件A发生的概率为635.(2)随机变量X的所有可能取值为1,2,3,4.P(X=k)=Ck5C4-k3C48(k=1,2,3,4).所以,随机变量X的分布列为X1234P1143737114随机变量X的数学期望E(X)=1×114+2×37+3×37+4×114=52.正态分布的实际应用-7-对于正态分布问题,课标要求不是很高,只要求了解正态分布中最基础的知识,主要是:(1)掌握正态分布曲线函数关系式;(2)理解正态分布曲线的性质;(3)记住正态分布在三个区间内取值的概率,运用对称性结合图象求相应的概率.正态分布的概率通常有以下两种求法:(1)注意“3σ原则”的应用.记住正态总体在三个区间内取值的概率.(2)注意数形结合.由于正态分布密度曲线具有完美的对称性,体现了数形结合的重要思想,因此运用对称性结合图象解决某一区间内的概率问题成为热点问题.【例4】某学校高三2500名学生第二次模拟考试总成绩服从正态分布N(500,502),请您判断考生成绩X在550~600分的人数.【精彩点拨】根据正态分布的性质求出P(550<x<600),即可求解在550~600分的人数.【解】∵考生成绩X~N(500,502),∴μ=500,σ=50,∴P(550X<600)=12[P(500-2×50X<500+2×50)-P(500-50X<500+50)]=12(0.9544-0.6826)=0.1359,∴考生成绩在550~600分的人数为2500×0.1359≈340(人).4.为了了解某地区高三男生的身体发育状况,抽查了该地区1000名年龄在17.5岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X(kg)服从正态分布N(μ,22),且正态分布密度曲线如图所示.若体重大于58.5kg小于等于62.5kg属于正常情况,则这1000名男生中属于正常情况的人数是()A.997B.954C.819D.683【解析】由题意,可知μ=60.5,σ=2,故P(58.5X≤62.5)=P(μ-σX≤μ+σ)=0.6826,从而属于正常情况的人数是1000×0.6826≈683.-8-【答案】D1.若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为()A.8B.15C.16D.32【解析】已知样本数据x1,x2,…,x10的标准差为s=8,则s2=64,数据2x1-1,2x2-1,…,2x10-1的方差为22s2=22×64,所以其标准差为22×64=2×8=16,故选C.【答案】C2.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312【解析】3次投篮投中2次的概率为P(k=2)=C23×0.62×(1-0.6),投中3次的概率为P(k=3)=0.63,所以通过测试的概率为P(k=2)+P(k=3)=C23×0.62×(1-0.6)+0.63=0.648.故选A.【答案】A3.已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p=________.【解析】由E(X)=30,D(X)=20,可得np=30,np1-p=20,解得p=13.【答案】134.某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图所示的柱状图:-9-以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【解】(1)由柱状图及以频率代替概率
本文标题:2019-2020学年高中数学 第2章 概率章末复习课讲义 新人教B版选修2-3
链接地址:https://www.777doc.com/doc-8467197 .html