您好,欢迎访问三七文档
-1-第2讲数列的性质与求和[做真题]1.(2019·高考全国卷Ⅲ)记Sn为等差数列{an}的前n项和.若a1≠0,a2=3a1,则S10S5=________.解析:设等差数列{an}的公差为d,由a2=3a1,即a1+d=3a1,得d=2a1,所以S10S5=10a1+10×92d5a1+5×42d=10a1+10×92×2a15a1+5×42×2a1=10025=4.答案:42.(2017·高考全国卷Ⅲ)设数列{an}满足a1+3a2+…+(2n-1)an=2n.(1)求{an}的通项公式;(2)求数列an2n+1的前n项和.解:(1)因为a1+3a2+…+(2n-1)an=2n,故当n≥2时,a1+3a2+…+(2n-3)an-1=2(n-1).两式相减得(2n-1)an=2,所以an=22n-1(n≥2).又由题设可得a1=2,从而{an}的通项公式为an=22n-1(n∈N*).(2)记{an2n+1}的前n项和为Sn.由(1)知an2n+1=2(2n+1)(2n-1)=12n-1-12n+1.则Sn=11-13+13-15+…+12n-1-12n+1=2n2n+1.[明考情]1.高考对数列性质的考查主要以选择、填空题的形式出现,考查数列的周期性、单调性、数列最值等,难度中等.2.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求数列的前n项和,难度中等偏下.-2-数列的性质(综合型)[典型例题](1)已知数列{an}满足:an+1=an-an-1(n≥2,n∈N*),a1=1,a2=2,Sn为数列{an}的前n项和,则S2020=()A.3B.2C.1D.0(2)已知等比数列{an}的前n项和为Sn,若a1=32,an+2an+1=0,则Sn-1Sn的最大值与最小值的积为____________.【解析】(1)因为an+1=an-an-1,a1=1,a2=2,所以a3=1,a4=-1,a5=-2,a6=-1,a7=1,a8=2,…,故数列{an}是周期为6的周期数列,且每连续6项的和为0,故S2020=336×0+a2017+a2018+a2019+a2020=a1+a2+a3+a4=3.(2)因为an+2an+1=0,所以an+1an=-12,所以等比数列{an}的公比为-12,因为a1=32,所以Sn=321--12n1--12.
本文标题:(新课标)2020版高考数学二轮复习 专题二 数列 第2讲 数列的性质与求和学案 文 新人教A版
链接地址:https://www.777doc.com/doc-8473460 .html