您好,欢迎访问三七文档
-1-5.1.1任意角考点学习目标核心素养任意角的概念理解任意角的概念,能区分各类角数学抽象终边相同的角掌握终边相同的角的含义及其表示方法数学抽象、逻辑推理象限角与区域角的表示掌握象限角的概念并能用集合表示各类象限角及区域角数学抽象、直观想象问题导学预习教材P168-P171,并思考以下问题:1.角的概念推广后,分类的标准是什么?2.如何判断角所在的象限?3.终边相同的角一定相等吗?如何表示终边相同的角?1.任意角(1)角的表示如图,OA是角α的始边,OB是角α的终边,O是角的顶点.角α可记为“角α”或“∠α”或简记为“α”.(2)角的分类按旋转方向,角可以分为三类:名称定义图示正角按逆时针方向旋转形成的角负角按顺时针方向旋转形成的角零角一条射线没有做任何旋转形成的角■名师点拨(1)正确理解正角、负角、零角的定义,关键是抓住角的终边的位置是由角的始边所对应的射线按照逆时针方向旋转、顺时针方向旋转还是没有旋转得到的.(2)若两角旋转方向相同且旋转量相等,则两角相等.2.象限角-2-在平面直角坐标系中,若角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.■名师点拨象限角的条件是角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.■名师点拨对终边相同的角的理解(1)α为任意角,“k∈Z”这一条件不能漏.(2)k·360°与α中间用“+”连接,k·360°-α可理解成k·360°+(-α).(3)相等的角的终边一定相同,而终边相同的角不一定相等.判断正误(正确的打“√”,错误的打“×”)(1)第一象限的角一定是正角.()(2)终边相同的角一定相等.()(3)锐角都是第一象限角.()(4)第二象限角是钝角.()答案:(1)×(2)×(3)√(4)×-110°是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角答案:C与30°角终边相同的角的集合是()A.{α|α=30°+k·360°,k∈Z}B.{α|α=-30°+k·360°,k∈Z}C.{α|α=30°+k·180°,k∈Z}D.{α|α=-30°+k·180°,k∈Z}解析:选A.由终边相同的角的定义可知与30°角终边相同的角的集合是{α|α=30°+k·360°,k∈Z}.如图,角α的终边为OB,则α=____________.-3-答案:{α|α=125°+k·360°,k∈Z}将35°角的终边按顺时针方向旋转60°所得的角度数为________,将35°角的终边按逆时针方向旋转一周后的角度数为________.答案:-25°395°任意角的概念下列结论:①三角形的内角必是第一、二象限角;②始边相同而终边不同的角一定不相等;③钝角比第三象限角小;④小于180°的角是钝角、直角或锐角.其中正确的结论为________(填序号).【解析】①90°的角既不是第一象限角,也不是第二象限角,故①不正确;②始边相同而终边不同的角一定不相等,故②正确;③钝角大于-100°的角,而-100°的角是第三象限角,故③不正确;④0°角小于180°,但它既不是钝角,也不是直角或锐角,故④不正确.【答案】②理解与角的概念有关问题的关键正确理解象限角与锐角、直角、钝角、平角、周角等概念,弄清角的始边与终边及旋转方向与大小.另外需要掌握判断结论正确与否的技巧,判断结论正确需要证明,而判断结论不正确只需举一个反例即可.经过2个小时,钟表的时针和分针转过的角度分别是()A.60°,720°B.-60°,-720°C.-30°,-360°D.-60°,720°解析:选B.钟表的时针和分针都是顺时针旋转,因此转过的角度都是负的,而212×360°=60°,2×360°=720°,故钟表的时针和分针转过的角度分别是-60°,-720°.-4-终边相同的角在与角10030°终边相同的角中,求满足下列条件的角β.(1)最大的负角;(2)[360°,720°)内的角.【解】与10030°终边相同的角的一般形式为β=k·360°+10030°(k∈Z).(1)由-360°k·360°+10030°0°,得-10390°k·360°-10030°,解得k=-28,故所求的最大负角为β=-50°.(2)由360°≤k·360°+10030°720°,得-9670°≤k·360°-9310°,解得k=-26,故所求的角为β=670°.(变问法)在本例条件下,求最小的正角.解:由0°k·360°+10030°360°,得-10030°k·360°-9670°,解得k=-27,故所求的最小正角为β=310°.(1)写出终边落在直线上的角的集合的步骤①写出在[0°,360°)内相应的角;②由终边相同的角的表示方法写出角的集合;③根据条件能合并一定合并,使结果简洁.(2)终边相同的角常用的三个结论①终边相同的角之间相差360°的整数倍;②终边在同一直线上的角之间相差180°的整数倍;③终边在相互垂直的两直线上的角之间相差90°的整数倍.1.下列角的终边与37°角的终边在同一直线上的是()A.-37°B.143°C.379°D.-143°解析:选D.与37°角的终边在同一直线上的角可表示为37°+k·180°,k∈Z,当k=-1时,37°-180°=-143°,故选D.2.若角2α与240°角的终边相同,则α=()A.120°+k·360°,k∈ZB.120°+k·180°,k∈ZC.240°+k·360°,k∈ZD.240°+k·180°,k∈Z解析:选B.角2α与240°角的终边相同,则2α=240°+k·360°,k∈Z,则α=120°+k·180°,k∈Z.选B.-5-3.终边在直线y=-x上的角β的集合S=________.解析:由题意可知,终边在直线y=-x上的角有两种情况:①当终边在第二象限时,可知{β|β=135°+k·360°,k∈Z};②当终边在第四象限时,可知{β|β=315°+k·360°,k∈Z}.综合①②可得,终边在直线y=-x上的角的集合S={β|β=135°+k·180°,k∈Z}.答案:{β|β=135°+k·180°,k∈Z}象限角与区域角的表示(1)如图,终边落在阴影部分的角的集合是()A.{α|-45°≤α≤120°}B.{α|120°≤α≤315°}C.{α|k·360°-45°≤α≤k·360°+120°,k∈Z}D.{α|k·360°+120°≤α≤k·360°+315°,k∈Z}(2)已知角α是第三象限角,则角α2是()A.第一或第二象限角B.第二或第三象限角C.第一或第三象限角D.第二或第四象限角【解析】(1)阴影部分的角从-45°到90°+30°=120°,再加上360°的整数倍,即k·360°-45°≤α≤k·360°+120°,k∈Z.(2)因为α是第三象限角,所以k·360°+180°<α<k·360°+270°(k∈Z),所以k·180°+90°<α2<k·180°+135°(k∈Z).当k=2n(n∈Z)时,n·360°+90°<α2<n·360°+135°(n∈Z),所以α2是第二象限角;当k=2n+1(n∈Z)时,n·360°+270°<α2<n·360°+315°(n∈Z),所以α2是第四象限角.【答案】(1)C(2)D(1)象限角的判定方法①根据图象判定.依据是终边相同的角的概念,因为0°~360°之间的角的终边与坐标系中过原点的射线可建立一一对应的关系;②将角转化到0°~360°范围内.在直角坐标平面内,在0°~360°范围内没有两个-6-角终边是相同的.(2)表示区域角的三个步骤①借助图形,在直角坐标系中先按逆时针的方向找到区域的起始边界和终止边界;②按由小到大的顺序分别标出起始边界和终止边界对应的-360°~360°范围内的角α和β;③分别将起始边界,终止边界的对应角α,β加上360°的整数倍,即可求得区域角.1.给出下列各角:-300°,-240°,-145°,-45°,30°,124°,210°,300°.则第一象限角有____________________;第二象限角有____________________;第三象限角有____________________;第四象限角有____________________.答案:-300°,30°-240°,124°-145°,210°-45°,300°2.如图,α,β分别是终边落在OA,OB位置上的两个角,且α=60°,β=315°.(1)求终边落在阴影部分(不包括边界)的角γ的集合;(2)求终边落在阴影部分(不包括边界),且在0°~360°范围内的角的集合.解:(1)因为与角β终边相同的一个角可以表示为-45°,所以阴影部分(不包括边界)所表示的角的集合为{γ|k·360°-45°γk·360°+60°,k∈Z}.(2){θ|0°≤θ60°或315°θ360°}.1.下列角中,终边在y轴非负半轴上的是()A.45°B.90°C.180°D.270°解析:选B.根据角的概念可知,90°角是以x轴的非负半轴为始边,逆时针旋转了90°,故其终边在y轴的非负半轴上.2.下列各角中与330°角终边相同的角是()A.510°B.150°C.-150°D.-390°解析:选D.-390°=330°-720°,所以与330°角终边相同的角是-390°.3.若角α的终边与75°角的终边关于直线y=0对称,且-360°α360°,则角α的值为____________.-7-解析:如图,设75°角的终边为射线OA,射线OA关于直线y=0对称的射线为OB,则以射线OB为终边的一个角为-75°,所以以射线OB为终边的角的集合为{α|α=k·360°-75°,k∈Z}.又-360°α360°,令k=0或1,得α=-75°或285°.答案:-75°或285°4.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°.解:(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.[A基础达标]1.下列角的终边位于第二象限的是()A.420°B.860°C.1060°D.1260°解析:选B.420°=360°+60°,终边位于第一象限;860°=2×360°+140°,终边位于第二象限;1060°=2×360°+340°,终边位于第四象限;1260°=3×360°+180°,终边位于x轴非正半轴.故选B.2.与1303°终边相同的角是()A.763°B.493°C.-137°D.-47°解析:选C.因为1303°=4×360°-137°,所以与1303°终边相同的角是-137°.3.集合A={α|α=k·90°-36°,k∈Z},B={β|-180°<β<180°},则A∩B=()A.{-36°,54°}B.{-126°,144°}C.{-126°,-36°,54°,144°}D.{-126°,54°}解析:选C.令k=-1,0,1,2,则A,B的公共元素有-126°,-36°,54°,144°.4.集合{α|k·180°+45°≤α≤k·180°+90°,k∈Z}中的角α的终边在单位圆中-8-的位置(阴影部分)是()解析:选C.当k=2n,n∈Z时,n·360°+45°≤α≤n·360°+90°,n∈Z;当k=2n+1,n∈Z时,n·360°+225°≤α≤n·360°+270°,n∈Z.故选C.5.若角α,β的终边相同,则α-β的终边落在()A.x轴的非负半
本文标题:2019-2020学年新教材高中数学 第五章 三角函数 5.1.1 任意角教师用书 新人教A版必修第
链接地址:https://www.777doc.com/doc-8474344 .html