您好,欢迎访问三七文档
-1-第三节变量间的相关关系与统计案例[最新考纲]1.会做两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系.2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归系数公式不要求记忆).3.了解回归分析的基本思想、方法及其简单应用.4.了解独立性检验(只要求2×2列联表)的思想、方法及其初步应用.1.两个变量的线性相关(1)正相关在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.(2)负相关在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关.(3)线性相关关系、回归直线如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.2.回归方程(1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.(2)回归方程:方程y^=b^x+a^是两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),…,(xn,yn)的回归方程,其中a^,b^是待定参数.3.回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法.(2)样本点的中心对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…,(xn,yn),其中(x-,y-)称为样本点的中心.-2-(3)相关系数当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关.r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.4.独立性检验(1)分类变量:变量的不同“值”表示个体所属的不同类别,像这类变量称为分类变量.(2)列联表:列出两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为2×2列联表y1y2总计x1aba+bx2cdc+d总计a+cb+da+b+c+d构造一个随机变量K2=nad-bc2a+ba+cb+dc+d,其中n=a+b+c+d为样本容量.[常用结论]1.回归直线必过样本点的中心(x,y).2.当两个变量的相关系数|r|=1时,两个变量呈函数关系.一、思考辨析(正确的打“√”,错误的打“×”)(1)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系.()(2)通过回归直线方程可以估计预报变量的取值和变化趋势.()(3)因为由任何一组观测值都可以求得一个线性回归方程,所以没有必要进行相关性检验.()(4)事件X,Y关系越密切,则由观测数据计算得到的K2的观测值越大.()[答案](1)√(2)√(3)×(4)√二、教材改编-3-1.在两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下,其中拟合效果最好的是()A.模型1的相关指数R2为0.98B.模型2的相关指数R2为0.80C.模型3的相关指数R2为0.50D.模型4的相关指数R2为0.25A[R2越接近于1,其拟合效果越好.]2.下面是2×2列联表:y1y2总计x1a2173x2222547总计b46120则表中a,b的值分别为()A.94,72B.52,50C.52,74D.74,52C[∵a+21=73,∴a=52.又a+22=b,∴b=74.]3.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:理科文科男1310女720已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到K2的观测值k=50×13×20-10×7223×27×20×30≈4.844.则认为选修文科与性别有关系出错的可能性约为.5%[K2的观测值k≈4.844,这表明小概率事件发生.根据假设检验的基本原理,应该断定“是否选修文科与性别之间有关系”成立,并且这种判断出错的可能性约为5%.]4.某同学家里开了一个小卖部,为了研究气温对某种冷饮销售量的影响,他收集了一段时间内这种冷饮每天的销售量y(杯)与当天最高气温x(℃)的有关数据,通过描绘散点图,发现y和x呈线性相关关系,并求得其回归方程y^=2x+60.如果气象预报某天的最高气温为34℃,则可以预测该天这种饮料的销售量为杯.128[由题意x=34时,该小卖部大约能卖出热饮的杯数y^=2×34+60=128杯.]-4-考点1相关关系的判断判定两个变量正、负相关的方法(1)画散点图:点的分布从左下角到右上角,两个变量正相关;点的分布从左上角到右下角,两个变量负相关.(2)相关系数:r>0时,正相关;r<0时,负相关.(3)线性回归直线方程中:b^0时,正相关;b^0时,负相关.1.已知变量x和y近似满足关系式y=-0.1x+1,变量y与z正相关.下列结论中正确的是()A.x与y正相关,x与z负相关B.x与y正相关,x与z正相关C.x与y负相关,x与z负相关D.x与y负相关,x与z正相关C[由y=-0.1x+1,知x与y负相关,即y随x的增大而减小,又y与z正相关,所以z随y的增大而增大,减小而减小,所以z随x的增大而减小,x与z负相关.]2.对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是()A.r2<r4<0<r3<r1B.r4<r2<0<r1<r3C.r4<r2<0<r3<r1D.r2<r4<0<r1<r3A[由相关系数的定义以及散点图可知r2<r4<0<r3<r1.]3.在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=-3x+1上,则这组样本数-5-据的样本相关系数为()A.-3B.0C.-1D.1C[在一组样本数据的散点图中,所有样本点(xi,yi)(i=1,2,…,n)都在直线y=-3x+1上,所以b=-30,即这组样本数据的两个变量负相关,且相关系数为-1.故选C.]4.x和y的散点图如图所示,则下列说法中所有正确命题的序号为.①x,y是负相关关系;②在该相关关系中,若用y=c1ec2x拟合时的相关系数为r1,用y^=b^x+a^拟合时的相关指数为r2,则|r1|>|r2|;③x,y之间不能建立线性回归方程.①②[在散点图中,点散布在从左上角到右下角的区域,因此x,y是负相关关系,故①正确;由散点图知用y=c1ec2x拟合比用y^=b^x+a^拟合效果要好,则|r1|>|r2|,故②正确;x,y之间可以建立线性回归方程,但拟合效果不好,故③错误.]相关关系的直观判断方法就是作出散点图,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性,若呈图形区域且分布较乱则不具有相关性.考点2回归分析线性回归分析求线性回归直线方程的步骤(1)用散点图或进行相关性检验判断两个变量是否具有线性相关关系;(2)利用公式b^=∑ni=1xi-xyi-y∑ni=1xi-x2=∑ni=1xiyi-nxy∑ni=1x2i-nx2,a^=y-b^x求得回归系数;(3)写出回归直线方程.如图是某企业2012年至2018年的污水净化量(单位:吨)的折线图.注:年份代码1~7分别对应年份2012~2018.-6-(1)由折线图看出,可用线性回归模型拟合y和t的关系,请用相关系数加以说明;(2)建立y关于t的回归方程,预测2021年该企业的污水净化量;(3)请用数据说明回归方程预报的效果.参考数据:y=54,∑7i=1(ti-t)(yi-y)=21,14≈3.74,∑7i=1(yi-y^i)2=94.参考公式:相关系数r=∑ni=1ti-tyi-y∑ni=1ti-t2∑ni=1yi-y2,线性回归方程y^=a^+b^t,b^=∑ni=1ti-tyi-y∑ni=1ti-t2,a^=y-b^t.反映回归效果的公式为:R2=1-∑ni=1yi-y^i2∑ni=1yi-y2,其中R2越接近于1,表示回归的效果越好.[解](1)由折线图中的数据得,t=4,∑7i=1(ti-t)2=28,∑7i=1(yi-y)2=18,所以r=2128×18≈0.935.因为y与t的相关系数近似为0.935,说明y与t的线性相关程度相当大,所以可以用线性回归模型拟合y与t的关系.(2)因为y=54,b^=∑7i=1ti-tyi-y∑7i=1ti-t2=2128=34,所以a^=y-b^t=54-34×4=51,所以y关于t的线性回归方程为y^=b^t+a^=34t+51.-7-将2021年对应的t=10代入得y^=34×10+51=58.5,所以预测2021年该企业污水净化量约为58.5吨.(3)因为R2=1-∑7i=1yi-y^i2∑7i=1yi-y2=1-94×118=1-18=78=0.875,所以“污水净化量的差异”有87.5%是由年份引起的,这说明回归方程预报的效果是良好的.在线性回归分析中,只需利用公式求出回归直线方程并利用其进行预测即可(注意回归直线过样本点的中心(x,y)),利用回归方程进行预测,常把线性回归方程看作一次函数,求函数值.[教师备选例题]某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:年份x20132014201520162017储蓄存款y(千亿元)567810表1为了研究计算的方便,工作人员将上表的数据进行了处理,t=x-2012,z=y-5得到下表2:时间代号t12345z01235表2(1)求z关于t的线性回归方程;(2)通过(1)中的方程,求出y关于x的回归方程;(3)用所求回归方程预测到2022年年底,该地储蓄存款额可达多少?(附:对于线性回归方程y^=b^x+a^,其中b^=∑ni=1xiyi-nxy∑ni=1x2i-nx2,a^=y-b^x)[解](1)t=3,z=2.2,∑5i=1tizi=45,∑5i=1t2i=55,b^=45-5×3×2.255-5×9=1.2,a^=z-b^t=2.2-3×1.2=-1.4,所以z^=1.2t-1.4.-8-(2)将t=x-2012,z=y-5,代入z^=1.2t-1.4,得y-5=1.2(x-2012)-1.4,即y^=1.2x-2410.8.(3)因为y^=1.2×2022-2410.8=15.6,所以预测到2022年年底,该地储蓄存款额可达15.6千亿元.1.(2017·山东高考)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系.设其回归直线方程为y^=b^x+a^.已知∑10i=1xi=225,∑10i=1yi=1600,b^=4.该班某学生的脚长为24,据此估计其身高为()A.160B.163C.166D.170C[∵∑10i=1xi=225,∴x=110∑10i=1xi=22.5.∵∑10i=1yi=1600,∴y=110∑10i=1yi=160.又b^=4,∴a^=y-b^x=160-4×22.5=70.∴回归直线方程为y^=4x+70.将x=24代入上式得y^=4×24+70=166.故选C.]2.某产品的广告费用x万元与销售额y万元的统计数据如表:广告费用x(万元)2345销售额y(万元)26m4954根据上表可得回归方程y^=9x+10.5,则m的值为()A.36B.37C.38D.39D[由回归方程的性质,线性回归方程过样本点的中心,则26+m+49+544=2+3+4+54×9+10.5,解得m=39.故选D.]非线性回归方程非线性回归方程的求法(1)根据原始数据作出散点图.(2)根据散点图,选择恰当的拟合函数.(3)作恰当变换,将其转化成线性函数,求线性回归方程.(4)在(3)的基础上通过相应变换,即可得非线性回归方程.-9-某公司为确定下一年度投
本文标题:2021版高考数学一轮复习 第九章 统计与统计案例 9.3 变量间的相关关系与统计案例教学案 苏教版
链接地址:https://www.777doc.com/doc-8478256 .html