您好,欢迎访问三七文档
-1-1.1.3导数的几何意义1.割线斜率与切线斜率设函数y=f(x)的图象如图所示,AB是过点A(x0,f(x0))与点B(x0+Δx,f(x0+Δx))的一条割线,此割线的斜率是ΔyΔx=□01fx0+Δxfx0Δx.当点B沿曲线趋近于点A时,割线AB绕点A转动,它的极限位置为直线AD,这条直线AD叫做此曲线在点A处的□02切线.于是,当Δx→0时,割线AB的斜率无限趋近于过点A的切线AD的斜率k,即k=f′(x0)=□03limΔx→0fx0+Δxfx0Δx.2.导数的几何意义函数y=f(x)在点x0处的导数的几何意义是曲线y=f(x)在点P(x0,f(x0))处的切线的□04斜率.也就是说,曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是□05f′(x0).相应地,切线方程为□06y-f(x0)=f′(x0)·(x-x0).3.函数的导数当x=x0时,f′(x0)是一个确定的数,则当x变化时,f′(x)是x的一个函数,称f′(x)是f(x)的□07导函数(简称□08导数).f′(x)也记作y′,即f′(x)=y′=□09limΔx→0fx+ΔxfxΔx.“函数f(x)在点x=x0处的导数”“导函数”-2-“导数”三者之间的区别与联系(1)函数在某一点处的导数:就是在该点处的函数值的改变量与自变量的改变量的比的极限,它是一个数值,不是变量.(2)导函数:如果函数y=f(x)在开区间(a,b)内每一点都可导,就说f(x)在开区间(a,b)内可导,这时对于区间(a,b)内每一个确定的值x0,都对应着一个导数f′(x0),这样就在开区间(a,b)内构成一个新的函数,我们把这一新函数叫做f(x)在开区间(a,b)内的导函数,记作f′(x)或y′,即f′(x)=y′=limΔx→0ΔyΔx=limΔx→0fx+ΔxfxΔx.(3)导函数也简称导数.(4)函数y=f(x)在点x0处的导数f′(x0)就是导函数f′(x)在点x=x0处的函数值,即f′(x0)=f′(x)|x=x0.所以求函数在某一点处的导数,一般是先求出函数的导函数,再计算这点的导函数值.1.判一判(正确的打“√”,错误的打“×”)(1)导函数f′(x)的定义域与函数f(x)的定义域相同.()(2)直线与曲线相切则直线与已知曲线只有一个公共点.()(3)函数f(x)=0没有导函数.()答案(1)×(2)×(3)×2.做一做(1)已知函数f(x)在x0处的导数为f′(x0)=1,则函数f(x)在x0处切线的倾斜角为________.(2)若函数f(x)在点A(1,2)处的导数是-1,那么过点A的切线方程是________.(3)函数f(x)=x2+1的导数f′(x)=________.答案(1)45°(2)x+y-3=0(3)2x探究1=4x0,解得x0=2或x0=4.当x0=2时,k=8,切点为(2,1),切线方程为y-1=8(x-2),即8x-y-15=0;当x0=4时,k=16,切点为(4,25),切线方程为y-25=16(x-4),即16x-y-39=0.故所求的切线方程为8x-y-15=0或16x-y-39=0.-3-
本文标题:2019-2020学年高中数学 第一章 导数及其应用 1.1 变化率与导数 1.1.3 导数的几何意
链接地址:https://www.777doc.com/doc-8480181 .html