您好,欢迎访问三七文档
1第2讲空间位置关系的判断与证明[全国卷3年考情分析]年份全国卷Ⅰ全国卷Ⅱ全国卷Ⅲ2019线面平行及点到平面的距离计算·T19面面平行的判定及充要条件·T7两直线位置关系的判断·T8线面垂直的证明及体积计算·T17翻折问题、面面垂直的证明及四边形面积计算·T192018直线与平面所成的角、长方体体积的计算·T10求异面直线所成的角·T9面面垂直的证明及线面平行的存在性问题·T19线面翻折及面面垂直的证明、三棱锥体积的计算·T18线面垂直的证明及点到平面的距离计算·T192017线面平行的判定·T6线面平行的证明、四棱锥体积的计算·T18空间中线线垂直的判定·T10面面垂直的证明、四棱锥体积及侧面积的计算·T18线线垂直的判定、四面体体积的计算·T19(1)选择题、填空题多考查线面位置关系的判断、空间角、表面积及体积的计算,此类试题难度中等偏下,考查次数较少.(2)解答题的第(1)问考查空间平行关系和垂直关系的证明,而第(2)问多考查面积、体积的计算,难度中等偏上.解答题的基本模式是“一证明二计算”.考点一空间点、线、面的位置关系[例1](1)(2019·全国卷Ⅱ)设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面(2)(2019·全国卷Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()2A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线[解析](1)若α∥β,则α内有无数条直线与β平行,反之不成立;若α,β平行于同一条直线,则α与β可以平行也可以相交;若α,β垂直于同一平面,则α与β可以平行也可以相交,故A、C、D均不是α∥β的充要条件.根据平面与平面平行的判定定理知,若一个平面内有两条相交直线与另一个平面平行,则两平面平行,反之也成立.因此B中条件是α∥β的充要条件.故选B.(2)取CD的中点F,DF的中点G,连接EF,FN,MG,GB,BD,BE.∵点N为正方形ABCD的中心,∴点N在BD上,且为BD的中点.∵△ECD是正三角形,∴EF⊥CD.∵平面ECD⊥平面ABCD,∴EF⊥平面ABCD.∴EF⊥FN.不妨设AB=2,则FN=1,EF=3,∴EN=FN2+EF2=2.∵EM=MD,DG=GF,∴MG∥EF,∴MG⊥平面ABCD,∴MG⊥BG.∵MG=12EF=32,BG=CG2+BC2=322+22=52,∴BM=MG2+BG2=7.∴BM≠EN.∵BM,EN是△DBE的中线,∴BM,EN必相交.故选B.[答案](1)B(2)B[解题方略]判断与空间位置关系有关命题真假的4种方法(1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判3断;(2)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理,进行肯定或否定;(3)借助于反证法,当从正面入手较难时,可利用反证法,推出与题设或公认的结论相矛盾的命题,进而作出判断;(4)判断空间两条直线是否相交,首先判断两直线是否共面.[跟踪训练]1.(2019·沈阳市质量监测一)已知m,n是空间中的两条不同的直线,α,β是空间中的两个不同的平面,则下列命题正确的是()A.若m∥n,m∥α,则n∥αB.若α∥β,m∥α,则m∥βC.若m⊥n,n⊂α,则m⊥αD.若m⊥α,m⊂β,则α⊥β解析:选D对于选项A,m∥n,m∥α,则n∥α或n⊂α,A错;对于选项B,α∥β,m∥α,则m∥β或m⊂β,B错;对于选项C,m⊥n,n⊂α,不能推出m⊥α,C错;对于选项D,面面垂直的判定定理,正确.故选D.2.(2019·沈阳市质量监测一)如图,在正方体ABCDA1B1C1D1中,下面结论中正确的是________.(写出所有正确结论的序号)①BD∥平面CB1D1;②AC1⊥平面CB1D1;③异面直线AC与A1B成60°角;④AC1与底面ABCD所成角的正切值是2.解析:对于①,BD∥B1D1,BD⊄平面CB1D1,B1D1⊂平面CB1D1,∴BD∥平面CB1D1,①正确;对于②,∵AA1⊥平面A1B1C1D1,∴AA1⊥B1D1,连接A1C1,又A1C1⊥B1D1,∴B1D1⊥平面AA1C1,∴B1D1⊥AC1,同理B1C⊥AC1,∴AC1⊥平面CB1D1,②正确;对于③,易知AC∥A1C1,异面直线AC与A1B所成的角为∠BA1C1,连接BC1,又△A1C1B为等边三角形,∴∠BA1C1=60°,异面直线AC与A1B成60°角,③正确;对于④,AC1与底面ABCD所成的角的正切值是CC1AC=12=22≠2,故④不正确.故正确的结论为①②③.4答案:①②③考点二空间平行、垂直关系的证明[经典母题][例2]如图,在四棱锥PABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点,求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.[证明](1)∵平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,PA⊂平面PAD,∴PA⊥底面ABCD.(2)∵AB∥CD,CD=2AB,E为CD的中点,∴AB∥DE,且AB=DE.∴四边形ABED为平行四边形.∴BE∥AD.又∵BE⊄平面PAD,AD⊂平面PAD,∴BE∥平面PAD.(3)∵AB⊥AD,且四边形ABED为平行四边形.∴BE⊥CD,AD⊥CD,由(1)知PA⊥底面ABCD.∴PA⊥CD.∵PA∩AD=A,PA⊂平面PAD,AD⊂平面PAD,∴CD⊥平面PAD,又PD⊂平面PAD,∴CD⊥PD.∵E和F分别是CD和PC的中点,∴PD∥EF,∴CD⊥EF.又BE⊥CD且EF∩BE=E,∴CD⊥平面BEF.又CD⊂平面PCD,∴平面BEF⊥平面PCD.[母题变式]1.在本例条件下,证明平面BEF⊥平面ABCD.5证明:如图,连接AE,AC,设AC∩BE=O,连接FO.∵AB∥CD,CD=2AB,且E为CD的中点,∴AB綊CE.∴四边形ABCE为平行四边形.∴O为AC的中点,则FO綊12PA,又PA⊥平面ABCD,∴FO⊥平面ABCD.又FO⊂平面BEF,∴平面BEF⊥平面ABCD.2.在本例条件下,若AB=BC,求证:BE⊥平面PAC.证明:如图,连接AE,AC,设AC∩BE=O.∵AB∥CD,CD=2AB,且E为CD的中点.∴AB綊CE.又∵AB=BC,∴四边形ABCE为菱形,∴BE⊥AC.又∵PA⊥平面ABCD,BE⊂平面ABCD,∴PA⊥BE.又PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,∴BE⊥平面PAC.[解题方略]1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.[跟踪训练]1.(2019届高三·郑州模拟)如图,四边形ABCD与四边形ADEF6均为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明:(1)如图,连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB的中点,N为AD的中点,所以MN为△ABD的中位线,所以BD∥MN,又BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG,又DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.2.(2019·广东省七校联考)如图,在四棱锥PABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=2,E是AB的中点,G是PD的中点.(1)求四棱锥PABCD的体积;(2)求证:AG∥平面PEC;(3)求证:平面PCD⊥平面PEC.解:(1)易知V四棱锥PABCD=13S正方形ABCD·PA=13×2×2×2=83.(2)证明:如图,取PC的中点F,连接EF和FG,则易得AE∥FG,且AE=12CD=FG,∴四边形AEFG为平行四边形,∴EF∥AG.∵EF⊂平面PEC,AG⊄平面PEC,∴AG∥平面PEC.7(3)证明:易知CD⊥AD,CD⊥PA,∵PA∩AD=A,PA⊂平面PAD,AD⊂平面PAD,∴CD⊥平面PAD.又AG⊂平面PAD,∴CD⊥AG.易知PD⊥AG,∵PD∩CD=D,PD⊂平面PCD,CD⊂平面PCD,∴AG⊥平面PCD,∴EF⊥平面PCD.又EF⊂平面PEC,∴平面PEC⊥平面PCD.考点三平面图形中的折叠问题[例3](2019·全国卷Ⅲ)图①是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②.(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的四边形ACGD的面积.[解](1)证明:由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连接EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°,得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM=3,故DM=2.所以四边形ACGD的面积为4.[解题方略]平面图形折叠问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.8[跟踪训练](2019·湖南省湘东六校联考)如图,将矩形ABCD沿对角线AC折起,使得平面ABD′⊥平面ABC.(1)求证:AD′⊥平面BCD′;(2)当AB=3,AD=1时,求点B到平面AD′C的距离.解:(1)证明:∵BC⊥AB,平面ABD′⊥平面ABC,平面ABD′∩平面ABC=AB,∴BC⊥平面ABD′,∵AD′⊂平面ABD′,∴BC⊥AD′,又AD′⊥D′C,BC∩D′C=C,∴AD′⊥平面BCD′.(2)由(1)知AD′⊥平面BCD′,又BD′⊂平面BCD′,∴AD′⊥BD′,从而BD′=2,设点B到平面AD′C的距离为h,由V三棱锥BAD′C=V三棱锥CAD′B,得13S△AD′C·h=13S△AD′B·BC,即13×12×1×3×h=13×12×1×2×1,得h=63,即点B到平面AD′C的距离为63.考点四空间线面关系的探究性问题[例4](2018·全国卷Ⅲ)如图,矩形ABCD所在平面与半圆弧CD︵所在平面垂直,M是CD︵上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由
本文标题:(全国通用)2020版高考数学二轮复习 第二层提升篇 专题三 立体几何 第2讲 空间位置关系的判断与
链接地址:https://www.777doc.com/doc-8480986 .html