您好,欢迎访问三七文档
线性代数练习题第一章行列式1.1211123111211xxxx中3x的系数为2.计算行列式nnnnnbaaaaabbbD123211210000000000000003计算下列行列式(1)6217213424435431014327427246)2(;222bacacbcbacba(3)1111111111111111xxxx4计算下列n阶行列式axaaaaaxaaaaaxaaaaaxDn111)()1()()1(111nnnnnnnnaaanaaaD5计算n阶行列式),,2,1(00001000100011111321niaaaaaDinn6计算行列式1111222233334444aaaa。7设行列式2235007022220403D求第四行各元素的余子式之和的值。8计算n阶行列式xyyxyxyxDn0000000000009计算行列式311151113D。10计算三阶行列式3241223kkD。11设A,B均为n阶方阵,1*2,3,2BABA求12设三阶矩阵323232,,,,,32其中BA都是三维行向量,且已知2,18BA,求BA。13设A为三阶方阵,1,2,3是三维线性无关的列向量,若211A,322A,133A,则行列式A。行列式答案1.-12.计算行列式nnnnnbaaaaabbbD12321121000000000000000解:由于前n-1行都只有一个元素不为0,由行列式定义知Dn只含一项:b1b2…bn,且符号为,)1()1(2)1(2(),1,,1(nnnn从而nnnnbbbD212)2)(1()1(。3计算下列行列式(1)6217213424435431014327427246)2(;222bacacbcbacba解(1):cbacbacbacbacbabacacbcbacba222222222222111)(111)(cbacbacbacbacbacba))()()((bcacabcba(2)62110010004431002000327100100062172110004435432000327427100062172134244354310143274272465551029429400211103271110621114431232711104计算下列n阶行列式axaaaaaxaaaaaxaaaaaxDn解1)2]()2([nnaxanxD说明:一定要注意此种形式的行列式;例如:1)]()1([nnxaxnaaxxxxaxxxxaxxxxaD)1()1(01111011110111101nDnn1)1]()1(1[1111nnaanaaaaaaaaaaaaD5计算n阶行列式),,2,1(00001000100011111321niaaaaaDinn解:))(1(000000000000111112213221nniinniinaaaaaaaaaD6计算行列式aaaaa4444333322221111。解:aaaaaaaaaaaaD4444333322221010101044443333222211114aaaaaaaa0000000001111)10(4444333322221111)10(3)10(aa7设行列式2235007022220403D求第四行各元素的余子式之和的值。解:由行列式展开知,D的第四行各元素余子式之和的值为行列式11110070222204031D的值因为将D1接第四行展开得444342411)1()1(AAAAD433442244114)1)(1()1()1)(1(MMM44434241MMMM所以计算1002440437111222043)1)(7(1111007022220403231D2844017444378计算n阶行列式xyyxyxyxDn000000000000解:将行列式按第一列展开得nnnnnyxyxyxyyxyxyxxD1111)1(0000000)1(0000000)1(9计算行列式311151113D。解:311151101)2(311151202311151113D)6)(3)(2(4125)2(411251001)2(10计算三阶行列式3241223kkD。解:32110221)1(321102213241223kkkkD2)1)(1(10010221)1(k11设A,B均为n阶方阵,1*2,3,2BABA求解3244222121111111*nnBABABABA12设三阶矩阵323232,,,,,32其中BA都是三维行向量,且已知2,18BA,求BA。解:223123231222223232323232BABBrBA13设A为三阶方阵,1,2,3是三维线性无关的列向量,若211A,322A,133A,则行列式A。解:法一利用分块矩阵,有),,()AA()(133221321321AA两边取行列式有133221321A1332321221321221323212又∵1,2,3线性无关,∴0321从而得2A法二)()(133221321A110011101)(321两边取行列式得110011101321321A又0321∴2110011101A法三)()(133221321A110011101)(321令321,,P由1,2,3线性无关知P可逆从而1100111011APP由相似的性质知2110011101A第二章矩阵1.已知BCA,其中nACB求),2,1,2(,121。2.设111011001A,求nA3设3100930000200012A,求nA。4设100001010A,APPB1,其中P为三阶逆阵,求220042AB5设A为n阶方阵,*A为A的伴随矩阵1k求*)(kA6设0004131000021000010A,求A中所有元素的代数余子式之和4141ijijA7设121011322A,求1A8已知A,B为三阶方阵,且满足EBBA421,其中E为三阶单位阵(1)证明矩阵A-2E可逆;(2)若200021021B,求矩阵A。9设A是可逆对称阵,且EBA2,化简TTABEBAE11110已知A,B均为3阶方阵,矩阵Z满足EAZBBZABZBAZA其中E为三阶单位阵,则Z=(A)122BA(B)11BABA(C)11BABA(D)条件不满足,不能确定11设矩阵A的伴随矩阵8030010100100001*A,且EBAABA311,其中E为4阶单位阵,求矩阵B。12设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记100010011P,则(A)APPC1(B)1PAPC(C)APPCT(D)TPAPC13计算2006200710000101098765432110000101014设A为n阶可逆阵,交换A的第i行与第j行后得到B。(1)证明B可逆;(2)求AB-115设三阶方阵111111aAaa,试求R(A).16设7654654354324321A4000130010204210B则)2(ABAR17设A是mn矩阵,B是nm矩阵,则(A)当mn时,必有0AB(B)当mn时,必有0AB(C)当nm时,必有0AB(D)当nm时,必有0AB18证明()()()RABRARB19A为mp矩阵,B为pn矩阵,若AB=0证明:()()RARBP20设A为n阶矩阵,且A2=A,若()RA.证明()RAEnr,其中E为n阶单位阵21设A与B都是n阶方阵,证明()()RABRB的充要条件是0ABX与0BX同解。矩阵答案1已知BCA,其中nACB求),2,1,2(,121。解:212424212BCAABCBCBCA2)(2))((2AAAAAAA222322)2(…AAnn12用数学归纳法证明当n=2时A2=2A结论成立假设对n-1时结论成立,下证对n也成立AAAAAAAnnnnn122212)(2)2(由归纳原理,结论成立。从而AAnn122设111011001A,求nA解100011010001001000AEB又BEEB所以2212)1(BEnnBnEEBEAnnnnn100011001(1)0100010002001000000nnn3设3100930000200012A,求nA。解由分块矩阵知CBA00,其中2012B,3193C∴nnnCBA00又PEB200102002∴PEnEPEBnnnn1)2()2(2nnnn20221而3193的秩为1,有3193631931nn从而111116360069630000200022nnnnnnnnnA4设100001010A,APPB1,其中P为三阶逆阵,求220042AB解∵APPB1∴PAPB200412004又
本文标题:线性代数章节练习题
链接地址:https://www.777doc.com/doc-8521978 .html