您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 决战中考数学综合训练:二次函数20版
决战2020中考数学综合训练:《二次函数》题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题1.二次函数y=3(x﹣2)2﹣1的图象顶点坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(2,1)D.(2,﹣1)2.当函数y=(a﹣1)x2+bx+c是二次函数时,a的取值为()A.a=1B.a=﹣1C.a≠﹣1D.a≠13.已知二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.C.2D.4.已知二次函数y=(x+m﹣2)(x﹣m)+2,点A(x1,y1),B(x2,y2)(x1<x2)是其图象上两点,()A.若x1+x2>2,则y1>y2B.若x1+x2<2,则y1>y2C.若x1+x2>﹣2,则y1>y2D.若x1+x2<﹣2,则y1<y25.抛物线y=x2+2先向右平移2个单位,再向下平移3个单位得到的抛物线的表达式是()A.y=(x﹣2)2+3B.y=(x﹣2)2﹣1C.y=(x﹣3)2+2D.y=(x﹣3)2﹣26.如图是二次函数y=﹣(x﹣2)2+3的图象,使y≥1成立的x的取值范围是()A.﹣1≤x≤4B.x≤0C.x≥1D.0≤x≤47.对于每个非零自然数n,抛物线y=x2﹣x+与x轴交于An,Bn两点,以AnBn表示这两点间的距离,则A1B1+A2B2+A3B3+…+A2019B2019的值是()A.B.C.D.8.如图是二次函数y=﹣x2+2x+4的图象,使y≥1成立的x的取值范围是()A.﹣1≤x≤3B.x≤﹣1C.x≥1D.x≤﹣1或x≥39.关于x的一元二次方程ax2+bx+=0有一个根是﹣1,若二次函数y=ax2+bx+的图象的顶点在第一象限,设t=2a+b,则t的取值范围是()A.<t<B.﹣1<t≤C.﹣≤t<D.﹣1<t<10.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≤﹣2时,y随x的增大而减小,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2B.1C.D.﹣或11.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、c重合),且保持DE⊥DF,连接EF在此运动变化的过程中,有下列结论:①△DFE是等腰直角三角形;②四边形CEDF的面积随点E位置的改变而发生变化;③点C到线段EF的最大距离为;其中正确结论的个数是()A.3个B.2个C.1个D.0个12.如图,二次函数y=ax2+bx+c(a≠0)的图象过点(﹣2,0),对称轴为直线x=1.有以下结论:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;④点M,N是抛物线与x轴的两个交点,若在x轴下方的抛物线上存在一点P,使得PM⊥PN,则a的取值范围为a≥1;⑤若方程a(x+2)(4﹣x)=﹣2的两根为x1,x2,且x1<x2,则﹣2≤x1<x2<4.其中结论正确的有()A.2个B.3个C.4个D.5个第Ⅱ卷(非选择题)二.填空题13.若二次函数y=4x2﹣4x+n的图象与x轴只有一个公共点,则实数n=.14.在平面直角坐标系中,抛物线y=﹣(x﹣1)2+2的顶点坐标是.15.若二次函数y=x2+x+a和x轴有两个交点,则a的取值范围为.16.已知二次函数y=x2﹣2x﹣2,当﹣1≤x≤4时,函数的最小值是.17.已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如表:x…﹣2﹣1012…y…105212…则当y<5时,x的取值范围是.18.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣4,0),对称轴为直线x=﹣1,下列结论:①abc>0;②2a﹣b=0;③一元二次方程ax2+bx+c=0的解是x1=﹣4,x2=1;④当y>0时,﹣4<x<2,其中正确的结论有.三.解答题19.已知二次函数y=(x﹣m)(x+m+4),其中m为常数.(1)求证:不论m为何值,该二次函数的图象与x轴有公共点.(2)若A(﹣1,a)和B(n,b)是该二次函数图象上的两个点,请判断a、b的大小关系.20.某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG:BG=3:2.设BG的长为2x米.(1)用含x的代数式表示DF=;(2)x为何值时,区域③的面积为180平方米;(3)x为何值时,区域③的面积最大?最大面积是多少?21.如图,抛物线y=ax2+bx+6经过点A(﹣2,0),B(4,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D的横坐标为m(1<m<4)连接BC,DB,DC.(1)求抛物线的函数解析式;(2)△BCD的面积是否存在最大值,若存在,求此时点D的坐标;若不存在,说明理由;(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.22.某商店购进一批成本为每件30元的商品.经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,试利用函数图象确定销售单价最多为多少元?23.如图1,抛物线y=ax2+bx﹣3经过A、B、C三点,己知点A(﹣3,0)、C(1,0).(1)求此抛物线的解析式.(2)点P是直线AB下方的抛物线上一动点(不与A、B重合),①过点F作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求出此时P点的坐标.②如图2,连接AP.以AP为边作图示一侧的正方形APMN,当它恰好有一个顶点落在抛物线对称轴上时,求出对应的P点的坐标.参考答案一.选择题1.解:∵二次函数y=3(x﹣2)2﹣1,∴该函数图象的顶点坐标为(2,﹣1),故选:D.2.解:由题意得:a﹣1≠0,解得:a≠1,故选:D.3.解:二次函数y=﹣(x﹣1)2+5的大致图象如下:.①当m<0≤x≤n<1时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=n时y取最大值,即2n=﹣(n﹣1)2+5,解得:n=2或n=﹣2(均不合题意,舍去);②当m<0≤x≤1≤n时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=1时y取最大值,即2n=﹣(1﹣1)2+5,解得:n=2.5,或x=n时y取最小值,x=1时y取最大值,2m=﹣(n﹣1)2+5,n=2.5,∴m=,∵m<0,∴此种情形不合题意,所以m+n=﹣2+2.5=0.5.故选:A.4.解:如图,当x=m或x=﹣m+2时,y=2,∴抛物线的对称轴x==1,∴当x1+x2<2时,点A与点B在对称轴的左侧或点A在对称轴的左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,观察图象可知,此时y1>y2,故选:B.5.解:y=x2+2先向右平移2个单位,再向下平移3个单位得到的抛物线的表达式是y=(x﹣2)2﹣1.故选:B.6.解:当y=1时,1=﹣(x﹣2)2+3,解得,x1=0,x2=4,∵二次函数y=﹣(x﹣2)2+3,∴该函数图象开口向下,对称轴是直线x=2,∴y≥1成立的x的取值范围是0≤x≤4,故选:D.7.解:当y=0时,x2﹣x+=0,(x﹣)(x﹣)=0,解得x1=,x2=,∴An,Bn两点为(,0),(,0),∴AnBn=﹣,∴A1B1+A2B2+A3B3+…+A2019B2019=1﹣+﹣+﹣+…+﹣=1﹣=.故选:D.8.解:由图象可知,﹣1≤x≤3时,y≥1.故选:A.9.解:∵关于x的一元二次方程ax2+bx+=0有一个根是﹣1,∴二次函数y=ax2+bx+的图象过点(﹣1,0),∴a﹣b+=0,∴b=a+,t=2a+b,则a=,b=,∵二次函数y=ax2+bx+的图象的顶点在第一象限,∴﹣>0,﹣>0,将a=,b=代入上式得:>0,解得:﹣1<t<,﹣>0,解得:t为任意实数,故:﹣1<t<,故选:D.10.解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≤﹣2时,y随x的增大而减小,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:B.11.解:连接CD,如图,∵∠C=90°,AC=BC=4,∴△ACB为等腰直角三角形,∴AB=AC=4,∠A=∠B=45°,∵D是AB的中点,∴AD=BD=CD=2,CD⊥AB,∠BCD=45°,∵DE⊥DF,∴∠EDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中∴△ADE≌△CDF(ASA),∴DE=DF,∴△DFE是等腰直角三角形;所以①正确;∴S△ADE=S△CDF,∴S四边形DECF=S△DEC+S△DCF=S△DEC+S△ADE=S△ADC=×2×2=4,所以②错误;当DE⊥AC时,DE的长度最小,此时EF最短,△DEF的面积最小,则△CEF的面积最大,所以C点到AB的距离最大,最大距离为CD=,所以③正确.故选:B.12.解:①由图象可知:a>0,c<0,>0,∴abc>0,故①正确;②∵抛物线的对称轴为直线x=1,抛物线的对称轴为直线x=1,∴=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c=0,∴4a+4a+c=0,∴8a+c=0,故②错误;③∵A(x1,m),B(x2,m)是抛物线上的两点,由抛物线的对称性可知:x1+x2=1×2=2,∴当x=2时,y=4a+2b+c=4a﹣4a+c=c,故③正确;④由题意可知:M,N到对称轴的距离为3,当抛物线的顶点到x轴的距离不小于3时,在x轴下方的抛物线上存在点P,使得PM⊥PN,即≤﹣3,∵8a+c=0,∴c=﹣8a,∵b=﹣2a,∴,解得:a,故④错误;⑤易知抛物线与x轴的另外一个交点坐标为(4,0),∴y=ax2+bx+c=a(x+2)(x﹣4)若方程a(x+2)(4﹣x)=﹣2,即方程a(x+2)(x﹣4)=2的两根为x1,x2,则x1、x2为抛物线与直线y=2的两个交点的横坐标,∵x1<x2,∴x1<﹣2<4<x2,故⑤错误;故选:A.二.填空题(共6小题)13.解:∵二次函数y=4x2﹣4x+n的图象与x轴只有一个公共点,∴当y=0时,方程0=4x2﹣4x+n有两个相同的实数根,∴△=(﹣4)2﹣4×4n=0,解得,n=1,故答案为:1.14.解:∵抛物线y=﹣(x﹣1)2+2,∴该抛物线的顶点坐标为(1,2),故答案为:(1,2).15.解:根据题意得△=12﹣4a>0,解得a<.故答案为a<.16.解:∵二次函数y=x2﹣2x﹣2=(x﹣1)2﹣3,∴该函数开口向上,对称轴是直线x=1,∵﹣1≤x≤4,∴当x=1时,函数取得最小值﹣3,故答案为:﹣3.17.解:由表格可知,二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=1,该函数开口向上,则当y=﹣5对应的x的值是x=﹣1或x=﹣3,故当y<5时,x的取值范围是﹣1<x<3,故答案为:﹣1<x<3.18.解:二次函数y=ax2+bx+c(a≠0)开口向下,a<0,对称轴为直线x=﹣1,即﹣=﹣1,b=2a,b<0,与y轴交在正半轴,c>0,∴abc>0,因此①正确;∵b=2a,即2a﹣b=0,因此②正确;图象过点(﹣4,0),对称轴为直线x=﹣1,因此与x轴另一个交点(2,0),因此一元二次方程ax2+bx+c=0的解是x1=﹣4,x2=2;故③不正确;由图象可得,
本文标题:决战中考数学综合训练:二次函数20版
链接地址:https://www.777doc.com/doc-8523643 .html