您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 中考卷:浙江省宁波市20版数学卷(解析版)
第1页(共18页)2020年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)﹣3的相反数为()A.﹣3B.﹣C.D.3【分析】根据只有符号不同的两个数互为相反数解答.【解答】解:﹣3的相反数是3.故选:D.2.(4分)下列计算正确的是()A.a3•a2=a6B.(a3)2=a5C.a6÷a3=a3D.a2+a3=a5【分析】直接利用同底数幂的乘除运算法则、幂的乘方运算法则、合并同类项法则分别化简得出答案.【解答】解:A、a3•a2=a5,故此选项错误;B、(a3)2=a6,故此选项错误;C、a6÷a3=a3,正确;D、a2+a3,不是同类项,不能合并,故此选项错误;故选:C.3.(4分)2019年宁波舟山港货物吞吐量为1120000000吨,比上年增长3.3%,连续11年蝉联世界首位.数1120000000用科学记数法表示为()A.1.12×108B.1.12×109C.1.12×109D.0.112×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:1120000000=1.12×109,故选:B.4.(4分)如图所示的几何体是由一个球体和一个长方体组成的,它的主视图是()A.B.第2页(共18页)C.D.【分析】根据主视图的意义和画法可以得出答案.【解答】解:根据主视图的意义可知,从正面看物体所得到的图形,选项B符合题意,故选:B.5.(4分)一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为()A.B.C.D.【分析】根据概率公式计算.【解答】解:从袋中任意摸出一个球是红球的概率==.故选:D.6.(4分)二次根式中字母x的取值范围是()A.x>2B.x≠2C.x≥2D.x≤2【分析】根据被开方数大于等于0列不等式求解即可.【解答】解:由题意得,x﹣2≥0,解得x≥2.故选:C.7.(4分)如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A.2B.2.5C.3D.4【分析】利用勾股定理求得AB=10;然后由直角三角形斜边上的中线等于斜边的一半求得CD的长度;结合题意知线段BF是△CDE的中位线,则BF=CD.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=8,BC=6,∴AB===10.又∵CD为中线,∴CD=AB=5.第3页(共18页)∵F为DE中点,BE=BC即点B是EC的中点,∴BF是△CDE的中位线,则BF=CD=2.5.故选:B.8.(4分)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A.B.C.D.【分析】直接利用“绳长=木条+4.5;绳子=木条﹣1”分别得出等式求出答案.【解答】解:设木条长x尺,绳子长y尺,那么可列方程组为:.故选:A.9.(4分)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=﹣1.则下列选项中正确的是()A.abc<0B.4ac﹣b2>0C.c﹣a>0D.当x=﹣n2﹣2(n为实数)时,y≥c【分析】由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,根据对称轴方程得到b>0,于是得到abc>0,故A错误;根据一次函数y=ax2+bx+c(a>0)的图象与x轴的交点,得到b2﹣4ac>0,第4页(共18页)求得4ac﹣b2<0,故B错误;根据对称轴方程得到b=2a,当x=﹣1时,y=a﹣b+c<0,于是得到c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,代入解析式得到y=ax2+bx+c=a(﹣n2﹣2)+b(﹣n2﹣2)=an2(n2+2)+c,于是得到y=an2(n2+2)+c≥c,故D正确.【解答】解:由图象开口向上,可知a>0,与y轴的交点在x轴的上方,可知c>0,又对称轴方程为x=﹣1,所以﹣<0,所以b>0,∴abc>0,故A错误∵;∴一次函数y=ax2+bx+c(a>0)的图象与x轴交于A,B两点,∴b2﹣4ac>0,∴4ac﹣b2<0,故B错误;∵﹣=﹣1,∴b=2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣2a+c<0,∴c﹣a<0,故C错误;当x=﹣n2﹣2(n为实数)时,y=ax2+bx+c=a(﹣n2﹣2)+b(﹣n2﹣2)=an2(n2+2)+c,∵a>0,n2≥0,n2+2>0,∴y=an2(n2+2)+c≥c,故D正确,故选:D.10.(4分)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长【分析】证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案.【解答】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,第5页(共18页)∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.二、填空题(每小题5分,共30分)11.(5分)实数8的立方根是2.【分析】根据立方根的性质和求法,求出实数8的立方根是多少即可.【解答】解:实数8的立方根是:=2.故答案为:2.12.(5分)分解因式:2a2﹣18=2(a+3)(a﹣3).【分析】首先提取公因式2,再利用平方差公式分解因式得出答案.【解答】解:2a2﹣18=2(a2﹣9)=2(a+3)(a﹣3).故答案为:2(a+3)(a﹣3).13.(5分)今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙454542S21.82.31.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲.【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.【解答】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,第6页(共18页)即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲.14.(5分)如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中的长为18πcm(结果保留π).【分析】根据弧长公式即可得到结论.【解答】解:∵折扇的骨柄长为27cm,折扇张开的角度为120°,∴的长==18π(cm),故答案为:18π.15.(5分)如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O的切线BC,BC=OA,连结OC,AC.当△OAC是直角三角形时,其斜边长为2.【分析】当∠AOC=90°时,连接OB,根据切线的性质得到∠OBC=90°,根据勾股定理得到AC===2.【解答】解:∵BC是⊙O的切线,∴∠OBC=90°,∵BC=OA,∴OB=BC=2,∴△OBC是等腰直角三角形,∴∠BCO=45°,∴∠ACO≤45°,∵当△OAC是直角三角形时,①∠AOC=90°,连接OB,∴OC=OB=2,∴AC===2;②当△OAC是直角三角形时,①∠OAC=90°,此时,点A,B重合(不合题意舍去),第7页(共18页)故答案为:2.16.(5分)如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD的面积为32,则a﹣b的值为24,的值为﹣.【分析】如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.求出证明四边形ACDE是平行四边形,推出S△ADE=S△ADC=S五边形ABCDE﹣S四边形ABCD=56﹣32=24,推出S△AOE=S△DEO=12,可得a﹣b=12,推出a﹣b=24.再证明BC∥AD,证明AD=3BC,推出AT=3BT,再证明AK=3BK即可解决问题.【解答】解:如图,连接AC,OE,OC,OB,延长AB交DC的延长线于T,设AB交x轴于K.由题意A,D关于原点对称,∴A,D的纵坐标的绝对值相等,∵AE∥CD,∴E,C的纵坐标的绝对值相等,∵E,C在反比例函数y=的图象上,第8页(共18页)∴E,C关于原点对称,∴E,O,C共线,∵OE=OC,OA=OD,∴四边形ACDE是平行四边形,∴S△ADE=S△ADC=S五边形ABCDE﹣S四边形ABCD=56﹣32=24,∴S△AOE=S△DEO=12,∴a﹣b=12,∴a﹣b=24,∵S△AOC=S△AOB=12,∴BC∥AD,∴=,∵S△ACB=32﹣24=8,∴S△ADC:S△ABC=24:8=1:3,∴BC:AD=1:3,∴TB:TA=1:3,设BT=a,则AT=3a,AK=TK=1.5k,BK=0.5k,∴AK:BK=3:1,∴==,∴=﹣.故答案为24,﹣.三、解答题(本大题有8小题,共80分)17.(8分)(1)计算:(a+1)2+a(2﹣a).(2)解不等式:3x﹣5<2(2+3x).【分析】(1)直接利用单项式乘以多项式以及完全平方公式分别计算得出答案;(2)直接利用一元一次不等式的解法进而计算即可.【解答】解:(1)(a+1)2+a(2﹣a)=a2+2a+1+2a﹣a2=4a+1;(2)3x﹣5<2(2+3x)3x﹣5<4+6x,第9页(共18页)移项得:3x﹣6x<4+5,合并同类项,系数化1得:x>﹣3.18.(8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影.请在余下的空白小等边三角形中,分别按下列要求选取一个涂上阴影:(1)使得4个阴影小等边三角形组成一个轴对称图形.(2)使得4个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【分析】(1)根据轴对称图形的定义画出图形即可(答案不唯一).(2)根据中心对称图形的定义画出图形即可(答案不唯一).【解答】解:(1)轴对称图形如图1所示.(2)中心对称图形如图2所示.19.(8分)图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm,∠ABC=47°.(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)【分析】(1)过点A作AH⊥BC于点H,根据锐角三角函数的定义即可求出答案.(2)根据锐角三角函数的定义求出AH的长度即可判断.第10页(共18页)【解答】解:(1)过点A作AH⊥BC于点H,∵AB=AC,∴BH=HC,在Rt△
本文标题:中考卷:浙江省宁波市20版数学卷(解析版)
链接地址:https://www.777doc.com/doc-8523646 .html