您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2016年北京市高考数学试卷(文科)(含解析)
2016年北京市高考数学试卷(文科)一、选择题1、已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5}B.{x|x<4或x>5}C.{x|2<x<3}D.{x|x<2或x>5}2、复数=()A.iB.1+iC.-iD.1-i3、执行如图所示的程序框图,输出s的值为()A.8B.9C.27D.364、下列函数中,在区间(-1,1)上为减函数的是()A.y=B.y=cosxC.y=ln(x+1)D.y=2-x5、圆(x+1)2+y2=2的圆心到直线y=x+3的距离为()A.1B.2C.D.26、从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.B.C.D.7、已知A(2,5),B(4,1).若点P(x,y)在线段AB上,则2x-y的最大值为()A.-1B.3C.7D.88、某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段,表中为10名学生的预赛成绩,其中有三个数据模糊.学生序号12345678910立定跳远(单位:米)1.961.921.821.801.781.761.741.721.681.6030秒跳绳(单位:次)63a7560637270a-1b65在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则()A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛二、填空题9、已知向量=(1,),=(,1),则与夹角的大小为__________.10、函数f(x)=(x≥2)的最大值为__________.11、某四棱柱的三视图如图所示,则该四棱柱的体积为__________.12、已知双曲线-=1(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为(,0),则a=__________,b=__________.13、在△ABC中,∠A=,a=c,则=__________.14、某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有__________种;②这三天售出的商品最少有__________种.三、解答题15、已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{an}的通项公式;(2)设cn=an+bn,求数列{cn}的前n项和.16、已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.17、某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如图频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.18、如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.19、已知椭圆C:+=1过点A(2,0),B(0,1)两点.(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.20、设函数f(x)=x3+ax2+bx+c.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围;(3)求证:a2-3b>0是f(x)有三个不同零点的必要而不充分条件.2016年北京市高考数学试卷(文科)的答案和解析一、选择题1、答案:C试题分析:由已知条件利用交集的定义能求出A∩B.试题解析:∵集合A={x|2<x<4},B={x|x<3或x>5},∴A∩B={x|2<x<3}.故选:C.2、答案:A试题分析:将分子分线同乘2+i,整理可得答案.试题解析:===i,故选:A3、答案:B试题分析:根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案.试题解析:当k=0时,满足进行循环的条件,故S=0,k=1,当k=1时,满足进行循环的条件,故S=1,k=2,当k=2时,满足进行循环的条件,故S=9,k=3,当k=3时,不满足进行循环的条件,故输出的S值为9,故选:B4、答案:D试题分析:根据函数单调性的定义,余弦函数单调性,以及指数函数的单调性便可判断每个选项函数在(-1,1)上的单调性,从而找出正确选项.试题解析:A.x增大时,-x减小,1-x减小,∴增大;∴函数在(-1,1)上为增函数,即该选项错误;B.y=cosx在(-1,1)上没有单调性,∴该选项错误;C.x增大时,x+1增大,ln(x+1)增大,∴y=ln(x+1)在(-1,1)上为增函数,即该选项错误;D.;∴根据指数函数单调性知,该函数在(-1,1)上为减函数,∴该选项正确.故选D.5、答案:C试题分析:先求出圆(x+1)2+y2=2的圆心,再利用点到到直线y=x+3的距离公式求解.试题解析:∵圆(x+1)2+y2=2的圆心为(-1,0),∴圆(x+1)2+y2=2的圆心到直线y=x+3的距离为:d==.故选:C.6、答案:B试题分析:从甲、乙等5名学生中随机选出2人,先求出基本事件总数,再求出甲被选中包含的基本事件的个数,同此能求出甲被选中的概率.试题解析:从甲、乙等5名学生中随机选出2人,基本事件总数n==10,甲被选中包含的基本事件的个数m==4,∴甲被选中的概率p===.故选:B.7、答案:C试题分析:平行直线z=2x-y,判断取得最值的位置,求解即可.试题解析:如图A(2,5),B(4,1).若点P(x,y)在线段AB上,令z=2x-y,则平行y=2x-z当直线经过B时截距最小,Z取得最大值,可得2x-y的最大值为:2×4-1=7.故选:C.8、答案:B试题分析:根据已知中这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,逐一分析四个答案的正误,可得结论.试题解析:∵这10名学生中,进入立定跳远决赛的有8人,故编号为1,2,3,4,5,6,7,8的学生进入立定跳远决赛,又由同时进入立定跳远决赛和30秒跳绳决赛的有6人,则3,6,7号同学必进入30秒跳绳决赛,剩下1,2,4,5,8号同学的成绩分别为:63,a,60,63,a-1有且只有3人进入30秒跳绳决赛,故成绩为63的同学必进入30秒跳绳决赛,故选:B二、填空题9、答案:试题分析:根据已知中向量的坐标,代入向量夹角公式,可得答案.试题解析:∵向量=(1,),=(,1),∴与夹角θ满足:cosθ===,又∵θ∈[0,π],∴θ=,故答案为:.10、答案:试题分析:分离常数便可得到,根据反比例函数的单调性便可判断该函数在[2,+∞)上为减函数,从而x=2时f(x)取最大值,并可求出该最大值.试题解析:;∴f(x)在[2,+∞)上单调递减;∴x=2时,f(x)取最大值2.故答案为:2.11、答案:试题分析:由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,进而可得答案.试题解析:由已知中的三视图可得:该几何体上部是一个以俯视图为底面四棱柱,棱柱的底面面积S=×(1+2)×1=,棱柱的高为1,故棱柱的体积V=,故答案为:12、答案:试题分析:由双曲的一条渐近线为2x+y=0,一个焦点为(,0),列出方程组,由此能出a,b.试题解析:∵双曲线-=1(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为(,0),∴,解得a=1,b=2.故答案为:1,2.13、答案:试题分析:利用正弦定理求出C的大小,然后求出B,然后判断三角形的形状,求解比值即可.试题解析:在△ABC中,∠A=,a=c,由正弦定理可得:,=,sinC=,C=,则B==.三角形是等腰三角形,B=C,则b=c,则=1.故答案为:1.14、答案:试题分析:①由题意画出图形得答案;②求出前两天所受商品的种数,由特殊情况得到三天售出的商品最少种数.试题解析:①设第一天售出商品的种类集为A,第二天售出商品的种类集为B,第三天售出商品的种类集为C,如图,则第一天售出但第二天未售出的商品有16种;②由①知,前两天售出的商品种类为19+13-3=29种,当第三天售出的18种商品都是第一天或第二天售出的商品时,这三天售出的商品种类最少为29种.故答案为:①16;②29.三、解答题15、答案:试题分析:(1)设{an}是公差为d的等差数列,{bn}是公比为q的等比数列,运用通项公式可得q=3,d=2,进而得到所求通项公式;(2)求得cn=an+bn=2n-1+3n-1,再由数列的求和方法:分组求和,运用等差数列和等比数列的求和公式,计算即可得到所求和.试题解析:(1)设{an}是公差为d的等差数列,{bn}是公比为q的等比数列,由b2=3,b3=9,可得q==3,bn=b2qn-2=3•3n-2=3n-1;即有a1=b1=1,a14=b4=27,则d==2,则an=a1+(n-1)d=1+2(n-1)=2n-1;(2)cn=an+bn=2n-1+3n-1,则数列{cn}的前n项和为(1+3+…+(2n-1))+(1+3+9+…+3n-1)=n•2n+=n2+.16、答案:试题分析:(1)利用倍角公式结合两角和的正弦化积,再由周期公式列式求得ω的值;(2)直接由相位在正弦函数的增区间内求解x的取值范围得f(x)的单调递增区间.试题解析:(1)f(x)=2sinωxcosωx+cos2ωx=sin2ωx+cos2ωx==.由T=,得ω=1;(2)由(1)得,f(x)=.再由,得.∴f(x)的单调递增区间为[](k∈Z).17、答案:试题分析:(1)由频率分布直方图得:用水量在[0.5,1)的频率为0.1,用水量在[1,1.5)的频率为0.15,用水量在[1.5,2)的频率为0.2,用水量在[2,2.5)的频率为0.25,用水量在[2.5,3)的频率为0.15,用水量在[3,3.5)的频率为0.05,用水量在[3.5,4)的频率为0.05,用水量在[4,4.5)的频率为0.05,由此能求出为使80%以上居民在该用的用水价为4元/立方米,w至少定为3立方米.(2)当w=3时,利用频率分布直方图能求出该市居民的人均水费.试题解析:(1)由频率分布直方图得:用水量在[0.5,1)的频率为0.1,用水量在[1,1.5)的频率为0.15,用水量在[1.5,2)的频率为0.2,用水量在[2,2.5)的频率为0.25,用水量在[2.5,3)的频率为0.15,用水量在[3,3.5)的频率为0.05,用水量在[3.5,4)的频率为0.05,用水量在[4,4.5)的频率为0.05,∵用水量小于等于3立方米的频率为85%,∴为使80%以上居民在该用的用水价为4元/立方米,∴w至少定为3立方米.(2)当w=3时,该市居民的人均水费为:(0.1×1+0.15×1.5+0.2×2+0.25×2.5+0.15×3)×4+0.05×3×4+0.05×0.5×10+0.05×3×4+0.05×1×10+0.05×3×4+0.05×1.5×10=10.5,∴当w=3时,估计该市居民该月的人均水费为10.5元.18、答案:试题分析:(1)利用线面垂直的判定定理证明DC⊥平面PAC;(2)利用线面垂直的判定定理证明AB⊥平面PAC,即可证明平面PAB⊥平面PAC;(3)在棱PB上存在中点F,使得PA∥平面CEF.利用线面平行的判定定理证明.试题解析:(
本文标题:2016年北京市高考数学试卷(文科)(含解析)
链接地址:https://www.777doc.com/doc-8525120 .html