您好,欢迎访问三七文档
第11章蜗杆传动§11-1蜗杆传动的类型§11-2普通蜗杆传动的参数与尺寸§11-3普通蜗杆传动的承载能力计算§11-6圆柱蜗杆与蜗轮的结构设计§11-5蜗杆传动的效率、润滑和热平衡计算潘存云教授研制蜗杆传动概述作用:用于传递交错轴之间的回转运动和动力。蜗杆主动、蜗轮从动。∑=90°形成:若单个斜齿轮的齿数很少(如z1=1)而且β1很大时,轮齿在圆柱体上构成多圈完整的螺旋。1ω1所得齿轮称为蜗杆,而啮合件称为蜗轮。蜗杆2ω2蜗轮改进措施:将刀具做成蜗杆状,用范成法切制蜗轮,所得蜗轮蜗杆为线接触。点接触优点:传动比大、结构紧凑、传动平稳、噪声小。能自锁。分度机构:i=1000,通常i=5~80缺点:传动效率低、蜗轮齿圈用青铜制造,成本高。啮合处有相对滑动,效率低。线接触健身增肌二次发育WeiXinTaoBao潘存云教授研制潘存云教授研制潘存云教授研制类型环面蜗杆传动圆柱蜗杆传动圆柱蜗杆§11-1蜗杆传动的类型锥蜗杆传动普通圆柱蜗杆传动圆弧圆柱蜗杆传动环面蜗杆锥蜗杆锥蜗杆传动中,蜗杆是由在节锥上分布的等导程的螺旋形成的,而蜗轮在外观上就像一个曲线锥齿轮,它是用与锥蜗杆相似的锥滚刀在普通滚齿机加工而成的。类型环面蜗杆传动圆柱蜗杆传动§11-2蜗杆传动的类型锥蜗杆传动普通圆柱蜗杆传动圆弧圆柱蜗杆传动普通圆柱蜗杆的齿面一般是在车床上用直线刀刃的车刀切制而成,车刀安装位置不同,加工出的蜗杆齿面的齿廓形状不同。潘存云教授研制普通圆柱蜗杆潘存云教授研制类型环面蜗杆传动圆柱蜗杆传动§11-2蜗杆传动的类型锥蜗杆传动普通圆柱蜗杆传动圆弧圆柱蜗杆传动圆弧圆柱蜗杆圆弧圆柱蜗杆传动与普通圆柱蜗杆传动的区别仅是加工用的车刀为圆弧刀刃。传动特点:1)传动效率高,一般可达90%以上;2)承载能力高,约为普通圆柱蜗杆的1.5~2.5倍;3)结构紧凑。潘存云教授研制类型环面蜗杆传动圆柱蜗杆传动§11-2蜗杆传动的类型锥蜗杆传动普通圆柱蜗杆传动圆弧圆柱蜗杆传动阿基米德蜗杆渐开线蜗杆法向直廓蜗杆锥面包络圆柱蜗杆γ阿基米德螺线2α阿基米德蜗杆单刀加工阿基米德蜗杆(ZA)潘存云教授研制类型环面蜗杆传动圆柱蜗杆传动§11-2蜗杆传动的类型锥蜗杆传动普通圆柱蜗杆传动圆弧圆柱蜗杆传动阿基米德蜗杆渐开线蜗杆法向直廓蜗杆锥面包络圆柱蜗杆阿基米德蜗杆(ZA)γ阿基米德蜗杆双刀加工潘存云教授研制αα阿基米德螺线潘存云教授研制类型环面蜗杆传动圆柱蜗杆传动§11-2蜗杆传动的类型锥蜗杆传动普通圆柱蜗杆传动圆弧圆柱蜗杆传动阿基米德蜗杆渐开线蜗杆法向直廓蜗杆锥面包络圆柱蜗杆渐开线蜗杆(ZI)渐开线蜗杆渐开线基圆α潘存云教授研制类型环面蜗杆传动圆柱蜗杆传动§11-2蜗杆传动的类型锥蜗杆传动普通圆柱蜗杆传动圆弧圆柱蜗杆传动阿基米德蜗杆渐开线蜗杆法向直廓蜗杆锥面包络圆柱蜗杆γ潘存云教授研制dx延伸渐开线αα车刀对中齿厚中心法面法向直廓蜗杆(ZN)潘存云教授研制潘存云教授研制潘存云教授研制类型环面蜗杆传动圆柱蜗杆传动§11-2蜗杆传动的类型锥蜗杆传动普通圆柱蜗杆传动圆弧圆柱蜗杆传动阿基米德蜗杆渐开线蜗杆法向直廓蜗杆锥面包络圆柱蜗杆法向直廓蜗杆(ZN)γdx延伸渐开线γ′2α车刀对中齿槽中线法面潘存云教授研制潘存云教授研制潘存云教授研制类型环面蜗杆传动圆柱蜗杆传动§11-2蜗杆传动的类型锥蜗杆传动普通圆柱蜗杆传动圆弧圆柱蜗杆传动阿基米德蜗杆渐开线蜗杆法向直廓蜗杆锥面包络圆柱蜗杆锥面包络圆柱蜗杆(ZK)2αγ近似于阿基米德螺线是一种非线性螺旋齿面蜗杆。不能在车床上加工,只能铣削或磨削,加工时工件作螺旋运动,刀具作旋转运动。砂轮γ类型环面蜗杆传动圆柱蜗杆传动§11-2蜗杆传动的类型锥蜗杆传动普通圆柱蜗杆传动圆弧圆柱蜗杆传动阿基米德蜗杆渐开线蜗杆法向直廓蜗杆锥面包络圆柱蜗杆环面蜗杆传动特点:(1)传动效率高,一般可达85%~90%;(2)承载能力高,约为阿基米德蜗杆的2~4倍;(3)要求制造和安装精度高。潘存云教授研制环面蜗杆潘存云教授研制类型环面蜗杆传动圆柱蜗杆传动§11-2蜗杆传动的类型锥蜗杆传动普通圆柱蜗杆传动圆弧圆柱蜗杆传动阿基米德蜗杆渐开线蜗杆法向直廓蜗杆锥面包络圆柱蜗杆锥蜗杆传动特点:锥蜗杆(1)同时接触的点数较多,重合度大;(2)传动比范围大,一般为10~360;(3)承载能力和传动效率高;(4)制造安装简便,工艺性好。阿基米德蜗杆最常用潘存云教授研制d蜗杆旋向:左旋、右旋(常用)β1γ1精度等级:对于一般动力传动,按如下等级制造:v17.5m/s7级精度v13m/s8级精度v11.5m/s9级精度判定方法:与螺旋和斜齿轮的旋向判断方法相同。潘存云教授研制潘存云教授研制中间平面1.正确啮合条件中间平面:过蜗杆轴线垂直于蜗轮轴线。正确啮合条件是中间平面内参数分别相等:mt2=ma1=m,αt2=αa1=α取标准值在中间平面内,蜗轮蜗杆相当于齿轮齿条啮合。一、圆柱蜗杆传动的主要参数2α§11-3普通蜗杆传动的参数与尺寸计算ZA蜗杆:αa=20°轴向模数m取标准值,与齿轮模数系列不同。第一系列1,1.25,1.6,2,2.5,3.15,4,5,6.3810,12.5,16,20,25,31.5,40第二系列1.5,3,3.5,4.5,5.56,7,12,14蜗杆模数m值GB-10088—882.模数m和压力角α压力角ZN蜗杆:αn=20°法向ZI蜗杆:αn=20°ZK蜗杆:αn=20°轴向压力角与法向压力角之间的关系:推导过程见机械原理斜齿条tanαa=tanαn/cosγ潘存云教授研制潘存云教授研制潘存云教授研制为保证蜗杆与蜗轮的正确啮合,加工蜗轮的滚刀应与蜗杆的几何参数完全相同,为使刀具标准化并减少刀具的数量,GB/T10088-1988将蜗杆分度圆直径d1规定为标准值。蜗轮蜗杆轮齿旋向相同.若∑=90°∴γ1=β2β1∵γ1+β1=90°蜗轮右旋蜗杆右旋=β1+β2定义s=e的圆柱称为蜗杆的分度圆柱。d1esd23.蜗杆的分度圆直径d1β1γ1∑ttβ2潘存云教授研制表11-1蜗杆分度圆直径与其模数的匹配标准系列mmm11.251.62d1182022.42028(18)22.4(28)35.5m2.53.154d1(22.4)28(35.5)45(28)35.5(45)56(31.5)m456.3d140(50)71(40)50(63)90(50)63m6.3810d1(80)112(63)80(100)140(71)90…摘自GB-10085—88,括号中的数字尽可能不采用称比值为蜗杆的直径系数。q=d1/m一般取:q=8~1820q=12.528q=17.51.6潘存云教授研制潘存云教授研制4.蜗杆头数z1蜗杆头数z1即螺旋线的数目。蜗杆转动一圈,相当于齿条移动z1个齿,推动蜗轮转过z1个齿。通常取z1=12465.蜗杆的导程角γ将分度圆柱展开得=z1pa1/πd1=mz1/d1tanγ1=l/πd1πd1lpa1γ1d1=z1/qγ1β16.传动比i和齿数比u传动比z1z2=—n2n1i=—若想得到大i,可取:z1=1,但传动效率低。对于大功率传动,可取:z1=2,或4。蜗轮齿数z2=iz1为避免根切和传动平稳性z2≥28一般动力传动情况z2≤80z2过大蜗杆长度↑刚度、啮合精度↓结构尺寸↑=u齿数比7.蜗轮齿数z2表11-3蜗杆头数z1与蜗轮齿数z2的推荐值传动比i≈57~1514~3029~82蜗杆头数z16421蜗轮齿数z229~3129~6129~6129~82a=(d1+d2)/28.蜗杆传动的标准中心距=m(q+z2)/2二、蜗杆传动的变位1、变位目的:配凑中心距;凑传动比。2、变位方法:与齿轮变位相同,靠刀具的移位实现变位。故:蜗杆尺寸不能变动,只能对蜗轮变位。加工蜗轮时的滚刀与蜗杆尺寸相同,加工时滚刀只作径向移动,尺寸不变。3、变位结果蜗杆和蜗轮滚刀尺寸相同,蜗轮滚铣节圆就是装配后与蜗杆的啮合节圆。蜗轮滚刀的滚铣节线不再是刀具中线(分度圆柱上母线)∴蜗杆——各部分尺寸不变,但节线变化11dd∴蜗轮——尺寸发生变化,但22dd4、变位类型1)变中心距、齿数不变2/22212mxddmxaa22222122222zqmaxzqmmxdda2222zzx2)a不变,齿数变化,凑i2221zqmamaax蜗杆传动变位的特点普通圆柱蜗杆传动变位的主要目的是配凑中心距或微量改变传动比,使之符合标准值或推荐值。为了保持刀具尺寸不变,不能改变蜗杆的尺寸,因而只能对蜗轮进行变位。1、凑中心距未变位时蜗杆传动中心距为,变位后蜗杆传动中心距蜗轮变位系数x2为2、凑传动比变位前、后的传动中心距不变,即a=a′,用改变蜗轮齿数z2来达到传动比略作调整的目的。变位系数x2为利用这种变位方法,蜗杆传动的传动比调整范围极其有限。由于变位系数x2过大会引起齿顶变尖,而过小又会引起轮齿根切,因此通常考虑到接触情况和曲率大小等因素,蜗轮变位系数通常在推荐范围一0.5≤x≤+0.5内取值。采用正变位系数有利于提高蜗轮轮齿强度,采用负变位系数能改善蜗杆传动的摩擦、磨损。2222zzx)(22zqm‘三、圆柱蜗杆传动几何尺寸的计算由蜗杆传动的功用,以及给定的传动比i,z1z2计算求得m、d1计算几何尺寸潘存云教授研制表12-3普通圆柱蜗杆传动的几何尺寸计算名称计算公式蜗杆、蜗轮分度圆直径齿顶高齿根高顶圆直径根圆直径蜗杆轴向齿距、蜗轮端面齿距径向间隙中心距蜗杆蜗轮d1=mqd2=mz2ha1=mha2=mhf1=1.2mhf2=1.2mda1=m(q+2)da2=m(z2+2)df1=m(q-2.4)df2=m(z2-2.4)pa1=pt2=px=πmc=0.2ma=0.5(d1+d2)=0.5m(q+z2)§11-3普通圆柱蜗轮传动承载能力计算一、失效形式、设计准则和常用材料1、失效形式与齿轮传动类似:点蚀、胶合、磨损、折断∵vs↑→η↓、发热↑→主要为:胶合、磨损、点蚀蜗轮强度较弱,失效主要发生在蜗轮上。因此只对蜗轮进行承载计算。2、设计准则传动类型失效形式设计准则开式传动磨损轮齿折断齿根弯曲疲劳强度闭式传动胶合点蚀按蜗轮齿面接触疲劳强度设计按齿根弯曲疲劳强度校核并进行热平衡计算材料蜗轮齿圈采用青铜:减摩、耐磨性、抗胶合。蜗杆采用碳素钢与合金钢:表面光洁、硬度高。材料牌号选择高速重载蜗杆:20Cr,20CrMnTi(渗碳淬火56~62HRC)或40Cr42SiMn45(表面淬火45~55HRC)一般蜗杆:4045钢调质处理(硬度为220~250HBS)蜗轮材料:vS12m/s时→ZCuSn10P1锡磷青铜vS12m/s时→ZCuSn5Pb5Zn5锡铅青铜vS≤6m/s时→ZCuAl10Fe3铝青铜。vS2m/s时→球墨铸铁、灰铸铁。二、蜗杆传动的常用材料蜗杆传动的设计准则*蜗杆的刚度计算*蜗轮的齿根弯曲疲劳强度计算*蜗轮的齿面接触疲劳强度计算为了防止齿面过度磨损引起的失效,应进行*传动系统的热平衡计算为了防止蜗杆刚度不足引起的失效,应进行为了防止过热引起的失效,就要进行潘存云教授研制潘存云教授研制四、圆柱蜗杆传动的受力分析Ft2Fr2Fa2Ft1Fr1Fa1ω2法向力可分解为三个分力:圆周力Ft轴向力Fa径向力Fr且有如下关系:Ft1=Fa2Fr1=Fr2Fa1=Ft2=2T1/d1=2T2/d2=Ft2tanα式中T1、T2分别为作用在蜗杆与蜗轮上的扭矩。T2=T1iηω2α各力关系:各力大小:21atFF21taFF21rrFF1121/2dTFFattan221trrFFF2221/2dTFFtacoscos/2tnFFiTT12作者:潘存云教授右旋蜗杆:伸出右手,四指顺蜗杆转向,则蜗杆的轴向力的方向与拇指指向相同。蜗轮由蜗杆推动,所受切向力与速度方向一致,正确判别蜗杆的转向,对进行力分析至关重要。左旋蜗杆:用左手判断,方法一样
本文标题:第11章蜗杆传动
链接地址:https://www.777doc.com/doc-8531234 .html