您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 《分子生物学论文》doc版
《分子生物学论文》doc版《分子生物学论文》doc版分子生物学论文基因治疗与基因诊断的研究与发展摘要:基因诊断与基因治疗能够在比较短的时间从理论设想变为现实,主要是由于分子生物学的理论及技术方法,特别是重组DNA技术的迅速发展,使人们可以在实验室构建各种载体、克隆及分析目标基因。所以对疾病能够深入至分子水平的研究,并已取得了重大的进展。因此在20世纪70年代末诞生了基因诊断(genediagnosis);随后于1990年美国实施了第一个基因治疗(genetherapy)的临床试验方案。可见,基因诊断和基因治疗是现代分子生物学的理论和技术与医学相结合的范例。关键词:基因治疗基因诊断重组DNA1.引言20世纪后半叶以来,由于分子生物学的崛起,人们进入了合成代谢与代谢调节的研究。这一阶段,细胞内两类重要的生物大分子---蛋白质与核酸,成为研究焦点。20世纪50年代初期发现了蛋白质的α螺旋的二级结构形式;更具里程碑意义的是1953年提出的DNA双螺旋结构模型,为揭示遗传信息传递规律奠定了基础,是生物化学发展进入分子生物学时期的重要标志。20世纪70年代,重组DNA技术的建立不仅促进了对基因表达调控机制的研究,使基因操作无所不能,而且使人们主动改造生物体成为可能。基因诊断和基因治疗也是重组DNA技术在医学领域应用的重要方面。随着对各种疑难疾病的深入研究,和分子生物学日新月异的发展,传统的诊断治疗手段无法解决的一些重要问题。通过对生物体在分子水平上的研究,基因诊断与治疗的作用逐渐显露出来,尤其是许多遗传疾病。传统对疾病的诊断主要是以疾病的表型改变为依据,如患者的症状、血尿各项指标的变化,或物理检查的异常结果,然而表型的改变在许多情况下不是特异的,而且是在疾病发生的一定时间后才出现,因此常不能及时作出明确的诊断。现知各种表型的改变是由基因异常造成的,也就是说基因的改变是引起疾病的根本原因。基因诊断是指采用分子生物学的技术方法来分析受检者的某一特定基因的结构(DNA水平)或功能(RNA水平)是否异常,以此来对相应的疾病进行诊断。基因诊断有时也称为分子诊断或DNA诊断(DNAdiagnosis)。基因诊断是病因的诊断,既特异又灵敏,可以揭示尚未出现症状时与疾病相关的基因状态,从而可以对表型正常的携带者及某种疾病的易感者作出诊断和预测,特别对确定有遗传疾病家族史的个体或产前的胎儿是否携带致病基因的检测具有指导意义。2.基因诊断的原理与方法2.1基因诊断的原理疾病的发生不仅与基因结构的变异有关,而且与其表达功能异常有关。基因诊断的基本原理就是检测相关基因的结构及其表达功能特别是RNA产物是否正常。由于DNA的突变、缺失、插入、倒位和基因融合等均可造成相关基因结构变异,因此,可以直接检测上述的变化或利用连锁方法进行分析,这就是DNA诊断。对表达产物mRNA质和量变化的分析为RNA诊断(RNAdiagnosis)。2.2基因诊断的方法基因诊断是以核酸分子杂交(nucleicacidmolecularhybridization)和聚合酶链反应(PCR)为核心发展起来的多种方法,同时配合DNA序列分析,近年新兴的基因芯片可能会发展成为一种很有用的基因诊断方法。·DNA诊断常用检测致病基因结构异常的方法有下列几种。⑴斑点杂交:根据待测DNA样本与标记的DNA探针杂交的图谱,可以判断目标基因或相关的DNA片段是否存在,根据杂交点的强度可以了解待测基因的数量。⑵等位基因特异的寡核苷酸探针(allele-specificoligonucleotideprobe,ASOprobe)杂交:是一种检测基因点突变的方法,根据点突变位点上下游核苷酸序列,人工合成约19个核苷酸长度的片段,突变的碱基位于当中,经放射性核素或地高辛标记后可作为探针,在严格杂交条件下,只有该点突变的DNA样本,才出现杂交点,即使只有一个碱基不配对,也不可能形成杂交点。一般尚合成正常基因同一序列,同一大小的寡核苷酸片段作为正常探针。如果受检的DNA样本只能与突变ASO探针,不与正常ASO探针杂交,说明受检二条染色体上的基因都发生这种突变,为突变纯合子;如果既能与突变ASO探针又能与正常ASO探针杂交,说明一条染色体上的基因发生突变,另一条染色体上为正常基因,为这种突变基因的杂合子;如果只能与正常ASO探针杂交,不能与突变ASO杂交,说明受检者不存在该种突变基因,如图21-1所示。若与PCR方法联合应用,即PCR/ASO探针杂交法(PCR/ASOprobehybridization),是一种检测基因点突变的简便方法,先用PCR方法扩增突变点上下游的序列,扩增产物再与ASO探针杂交,可明确诊断突变的纯合子和杂合子。此法对一些已知突变类型的遗传病,如地中海贫血、苯丙酮尿症等纯合子和杂合子的诊断很方便。也可分析癌基因如H-ras和抑癌基因如p53的点突变。⑶单链构象多态性(singlestrandconformationpolymorphism,SSCP)分析相同长度的单链DNA因其序列不同,甚至单个碱基不同,所形成的构象不尽相同,在非变性聚丙烯酰胺凝胶电泳时速度就不同,若单链DNA用放射性核素标记,显影后即可区分电泳条带。一般先设计引物对突变点所在外显子进行扩增,PCR产物经变性成单链后进行电泳分析。PCR/SSCP方法,能快速、灵敏、有效地检测DNA突变点,如图21-2,此法可用检测点突变的遗传疾病,如苯丙酮尿症、血友病等,以及点突变的癌基因和抑癌基因。⑷限制性内切酶图谱(restrictionmap)分析,如果DNA突变后改变了某一核酸限制性内切酶的识别位点,使原来某一识别位点消失,或形成了新的识别位点,那么相应限制性内切酶片段的长度和数目会发生改变。一般基因组DNA经该种限制性内切酶水解,再做Southern印迹,根据杂交片段的图谱,可诊断该点突变,如图21-3所示。如果用PCR扩增该突变点的外显子,PCR产物经该种酶消化后,进行琼脂糖电泳,溴乙锭染色后可直接观察片段的大小及数目。此法可用于检测有些限制性内切酶识别位点消失的遗传疾病,如镰状细胞贫血。或基因缺失的疾病如α地中海贫血症,单纯性生长激素缺乏症等。⑸限制性片段长度多态性(restrictionfragmentlengthpolymorphism,RFLP)遗传连锁分析人群中个体间DNA的序列存在差异,据估计每100-200个核苷酸中便有1个发生突变,这种现象称为DNA多态性。有些DNA多态性可改变某一限制性内切酶的识别位点,因而产生了DNA限制性片段长度多态性。RFLP按孟德尔方式遗传,在某一特定的家庭中,如果某一致病基因与特定的多态性片段连锁,可以遗传给子代,因此这一多态性片段可作为遗传标记,来判断该家庭成员或胎儿的基因组中是否携带该致病基因,见图21-4,此法可用于诊断甲型血友病、苯丙酮尿症、享延顿舞蹈病等。⑹DNA序列分析对致病有关的DNA片段进行序列测定,是诊断基因异常(已知和未知)最直接和准确的方法。·RNA诊断RNA诊断主要是分析基因的表达功能,检测转录物的质和量,以判断基因转录效率的高低,以及转录物的大小。⑴RNA印迹(Northernblot)RNA印迹是检测基因是否表达,表达产物mRNA的大小的可靠方法,根据杂交条带的强度,可以判断基因表达的效率。⑵RT-PCR是一种检测基因表达产物mRNA灵敏的方法,若与荧光定量PCR结合可对RT-PCR产物量进行准确测定。3.基因诊断的应用3.1遗传病的预防·产前诊断产前诊断可以通过胎儿组织活检、羊膜腔穿刺、羊膜绒毛样品及母体血液循环中的胎儿细胞进行。可以进行染色体组型分析,发现染色体异常,但利用PCR技术结合DNA诊断学方法分析特异基因缺陷更宜推广。·携带者测试基因测试常用于检出隐性遗传病携带者,包括遗传病受累个体家庭的其他成员和有特殊遗传病死亡家庭中的危险人群。例如对3个缺失型和1个非缺失型Duchenne假肥大肌营养不良家系缺失DNA片段PCR定量分析和SRR-PCR连锁分析,对4个家系17名成员(患儿5名、女性亲属7名、男性亲属5名)进行了基因检测。检测结果发现了4名女性为致病基因携带者,肯定了7名女性为非携带者,为这些家系提供了可靠的遗传信息。以上检测方法简便易行,利于在临床实验室中开展。·症状前诊断对于某些单基因紊乱所引起的综合征,仅至晚年才会有明显表现,例如肝豆状核变性的症状前诊断及干预治疗,应用短串联重复序列标记对40个肝豆状核变性家系进行单体型连锁分析,在先证者的81例无症状同胞中,检出11例症状前患者。对其中8例投用硫酸锌治疗,效果良好,在预防症状出现的同时,提高了血清铜蓝蛋白水平。强调症状前诊断及干预治疗的重要性。·遗传病易感性多基因遗传病是由多个易感性基因累加效应引起的遗传性状,是由多个易感性基因累加效应引起的遗传性状,是多个才会有发病的机会。比如,有LDL受体基因缺陷的个体同时有高胆固醇血症,其冠状动脉患病率要比单纯高胆固醇血症者高。因此,根据DNA诊断,做好疾病的早期预防并注意环境卫生和个人生活方式,可以达到预防的目的。3.2感染性疾病过去对感染性疾病(infectiousdiseases)的诊断,一是直接分离检查病原体,或者对患者血清学或生物化学的分析。有些病原体不容易分离,有些需经过长期培养才能获得。血清学对病原体抗体的检测虽然很方便,但是病原体感染人体后需要间隔一段时间后才出现抗体,并且血清学检查只能确定是否接触过该种病原体,但不能确定是否有现行感染,对潜伏病原体的检查有困难。对感染性疾病的基因诊断具有快速、灵敏、特异等优点。80年代建立的PCR技术已广泛应用于对病原体的检测。一般根据各病原体特异和保守的序列设计引物,有的还合成ASO探针,对病原体的DNA可用PCR技术直接检查,而对RNA病毒,则采用RT-PCR。现在市场已经有许多种病原体的测定药盒供应,每一盒包含扩增某种病原体的特异引物,所需的酶以及配妥的各种反应试剂,并附有可行的操作方法步骤。·病毒性感染:多种病毒性感染都可采用基因诊断检测相应的病原体,如甲型、乙型、丙型和丁型肝炎病毒,人免疫缺陷病毒、可萨奇病毒、脊髓灰质类病毒、腺病毒、EB病毒、疱疹病毒、人巨细胞病毒、乳头状病毒……等。最近新发现的SARS冠状病毒,在基因组(RNA)序列确定后,便很快建立了RT-PCR的基因诊断法。·细菌性感染:可应用基因诊断检测多种致病性的细菌,如结核分枝杆菌、痢疾性大肠杆菌、霍乱弧菌、淋球菌、绿脓杆菌……等。·寄生虫:恶性疟原虫、克鲁斯锥虫、利什曼原虫、血吸虫、弓形虫……等都有基因诊断的方法·其它:如衣原体、支原体、真菌性感染也均用基因诊断。3.3恶性肿瘤分析一些原癌基因的点突变、插入突变、基因扩增、染色体易位和抑癌基因的丢失或突变,可以了解恶性肿瘤的分子机制,有助于对恶性肿瘤的诊断,对肿瘤治疗及预后有指导意义。4.基因治疗4.1基因治疗的定义从基因角度可以理解为对缺陷的基因进行修复或将正常有功能的基因置换或增补缺陷基因的方法。若从治疗角度可以广义地说是一种基于导入遗传物质以改变患者细胞的基因表达从而达到治疗或预防疾病的目标的新措施。导入的基因可以是与缺陷基因相对应的有功能的同源基因或与缺陷基因无关的治疗基因。基因治疗有两种形式,一种是改变体细胞的基因表达,即体细胞基因治疗(somaticgenetherapy),另一种是改变生殖细胞的基因表达,即种系基因治疗(germlinegenetherapy),从理论上讲,若对缺陷的生殖细胞进行矫正,不但当代可以得到根治,而且可以将正常的基因传给子代。但生殖的生物学极其复杂,且尚未清楚,一旦发生差错将给人类带来不可想象的后果,涉及一系列伦理学的问题,目前还不能用于人类。在现有的条件下,基因治疗仅限于体细胞,基因型的改变只限于某一类体细胞,其影响只限于某个体的当代。4.2基因治疗的方式基因治疗的方式(typeofgenetherapy)主要有3类,一类为基因矫正或置换,即对缺陷基因的异常序列进行矫正,对缺陷基因精确地原位修复,或以正常基因原位置换异常
本文标题:《分子生物学论文》doc版
链接地址:https://www.777doc.com/doc-8568621 .html