您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 第12章-薄板的小挠度弯曲问题
1第十二章薄板的小挠度弯曲问题知识点薄板的基本概念薄板的位移与应变分量薄板广义力薄板小挠度弯曲问题基本方程薄板自由边界条件的简化薄板的莱维解矩形简支薄板的挠度基尔霍夫假设薄板应力广义位移与薄板的平衡薄板的典型边界条件薄板自由边界角点边界条件挠度函数的分解一、内容介绍薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板。薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。薄板的小挠度弯曲理论是由基尔霍夫基本假设作为基础的。根据基尔霍夫假设,采用位移解法,就是以挠度函数作为基本未知量求解。因此,首先将薄板的应力、应变和内力用挠度函数表达。然后根据薄板单元体的平衡,建立挠度函数表达到平衡方程。对于薄板问题,边界条件的处理与弹性力学平面等问题有所不同,典型形式有几何边界、混合边界和面力边界条件。二、重点1、基尔霍夫假设;2、薄板的应力、广义力和广义位移;3、薄板小挠度弯曲问题的基本方程;4、薄板的典型边界条件及其简化。§12.1薄板的基本概念和基本假设学习要点:本节讨论薄板的基本概念和基本假设。薄板主要几何特征是板的中面和厚度。首先,根据几何尺寸,定义薄板为0.5≤/b≥1/80,并且挠度小于厚度的五分之一,属于小挠度问题。对于小挠度薄板,在横向载荷作用下,将主要产生弯曲变形。2根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。薄板的小挠度弯曲理论是由三个基本假设作为基础的,因为这些基本假设是由基尔霍夫首先提出的,因此又称为基尔霍夫假设。根据上述假设建立的薄板小挠度弯曲理论是弹性力学的经典理论,长期应用于工程问题的分析。实践证明是完全正确的。学习思路:1、薄板基本概念;2、基尔霍夫假设1、薄板基本概念薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。薄板的上下两个平行面称为板面,垂直于平行面的柱面称为板边,如图所示。两个平行面之间的距离称为板厚,用表示。平分板厚的平面称为板的中面。设薄板宽度为a、b,假如板的最小特征尺寸为b,如果b≥1/5,称为厚板;如果/b≤1/80,称为膜板;如果1/80≤/b≤1/5,称为薄板。厚板属于弹性力学空间问题,而膜板只能承受膜平面内部的张力,因此,板的弯曲问题主要是薄板。如果薄板的外载荷作用于板的中面,而且不发生失稳问题时,属于平面应力问题讨论。如果外载荷为垂直于板的中面作用的横向载荷,则板主要变形为弯曲变形。中面在薄板弯曲时变形成为曲面,中面沿垂直方向,即横向位移称为挠度。对于薄板,仍然有相当的弯曲刚度,如果挠度小于厚度的五分之一,属于小挠度问题;如果超过这个界限,属于大变形问题。本章只讨论薄板的小挠度弯曲3问题。根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。薄板的小挠度弯曲理论是由三个基本假设作为基础的,因为这些基本假设是由基尔霍夫首先提出的,因此又称为基尔霍夫假设。2、基尔霍夫假设薄板的小挠度弯曲理论是由三个基本假设作为基础的,因为这些基本假设是由基尔霍夫首先提出的,因此又称为基尔霍夫假设。设中面为xy平面,则1、变形前垂直于中面的直线变形后仍然保持直线,而且长度不变。这相当于梁的弯曲变形平面假设,如图所示根据这一假设,z=zx=zy=0。2、垂直于中面方向的应力分量z,zx,zy远小于其他应力分量,其引起的变形可以不计,但是对于维持平衡是必要的,这相当于梁的弯曲无挤压应力假设。3、薄板弯曲时,中面各点只有垂直中面的位移w,没有平行中面的位移,即uz=0=0,vz=0=0,w=w(x,y)根据这一假设,板的中面将没有变形发生。板的中面位移函数w(x,y)称为挠度函数。根据上述假设建立的薄板小挠度弯曲理论是弹性力学的经典理论,长期应用于工程问题的分析,实践证明是完全正确的。根据基尔霍夫假设,薄板弯曲的基本未知量可以取挠度函数w(x,y)。下面的工作是通过平衡微分方程、几何方程和本构方程,用挠度函数w(x,y)表达薄板内部任意一点的位移、应力、应变和内力等,然后利用薄板单元体的平衡建立挠度函数所要满足的微分方程。4因此,薄板的小挠度弯曲问题求解属于位移解法。§12.2薄板小挠度弯曲问题的基本方程学习要点:根据基尔霍夫假设,薄板弯曲的基本未知量可以取挠度函数w(x,y)。因此,薄板的小挠度弯曲问题求解采用位移解法。本节的工作是通过平衡微分方程、几何方程和本构方程,用挠度函数w(x,y)表达薄板内部任意一点的位移、应力、应变和内力等,然后利用薄板单元体的平衡建立挠度函数所要满足的微分方程。分析中应该注意,根据基本假设,与厚度方向相关的应变分量为零,其对应的应力分量产生的变形是忽略不计的。但是应该注意这些应力分量对于平衡的影响必须考虑。通过分析可以得到薄板问题的广义力和对应的广义位移。根据单元体的平衡,可以得到关于广义力和广义位移的关系式。然后将其描述为挠度函数表达的薄板基本方程。学习思路:1、位移与应变分量;2、应力分量;3、广义力;4、广义位移与平衡关系;5、薄板弯曲小挠度问题的基本方程。1、薄板位移和应变分量根据薄板弯曲的第一个假设,则几何方程为根据几何方程的第3式,则,从而w=w(x,y)。薄板厚度方向的位移与z坐标无关,可以应用板的中面位移表达板的挠度。根据几何方程的5,6式,有对z积分,可得5注意到第3个假设,uz=0=0,vz=0=0,因此f(x,y)=g(x,y)=0,所以上述分析将位移分量通过挠度函数w(x,y)表示。根据几何方程可以得到挠度函数表达的应变分量。有上式表明,薄板的弯曲应变是沿厚度线性分布的,在板的中面为零,上下板面处达到极值。2、薄板的应力分量根据基尔霍夫假设,本构方程简化为代入应变表达式有6薄板小挠度弯曲问题的正应力和切应力沿厚度也是线性分布的。基本假设中的z=zx=zy=0,与厚度方向相关的应变分量为零,其对应的应力分量产生的变形是不计的。应该注意的问题是,这些应力分量相对于其它应力分量产生的变形可以不计,但是对于平衡的影响必须考虑。这里必须放弃物理方程中关于的z=zx=zy=0的结论,而要求z=-(x+y)≠0;zx≠zy≠0。由于不计xz,yz,所以xz=yz=0,根据几何方程,当然必须放弃物理方程中关于的xz和yz的部分,即要xz=yz=0,而xz,yz又不等于0。3、广义力对于矩形薄板,采用图示坐标系。如果从薄板中选取一个微小单元体dxdy,单元体在Oxy平面的投影为矩形abcd,单元体上部有横向载荷qdxdy,底面为自由表面。其中外法线与x轴平行的的侧面有应力分量x,xz,xy,根据公式7可以知道,应力分量x,xz,xy均以中面为对称面而反对称分布。这些应力分量将分别组成合成弯矩Mx,扭矩My和横向剪力FSx,如图所示如果用Mx,My和FSx分别单位长度的弯矩,扭矩和横向剪力。则同理,讨论外法线与x轴平行的的侧面,有下面设法将上述内力用挠度函数w(x,y)表示。将应力表达式代入上述内力分量表达式,有8其中同理上述内力Mx,My,Myy和FSx和FSy称为广义力。分别作用于单元体的侧面边界如图所示。4、广义位移与平衡关系上述广义力对应的广义应变为x是薄板中面在与Oxz平面平行的平面内的曲率,曲率取负号是由于挠曲面凸面向下为正曲率,而对应的挠度函数的二阶导数为负值。kxy称为中面对于x,y轴的扭率。利用广义应变,可以将广义力表示为考虑单元体的平衡9则如果讨论,即绕x轴的力矩之和等于零。考虑单元体内力对于角点的力矩平衡,有整理并且略去高阶小量,有5、薄板弯曲小挠度问题的基本方程同理,根据,有根据,可以得到简化并且略去高阶小量,有将公式代入上式,并且注意到Mxy=Myx,有将挠度函数w(x,y)代入上式,则或者写作其中号为拉普拉斯算符。公式就是薄板小挠度弯曲问题的基本方程。10从而,问题归结为在满足边界条件的基础上求解基本方程,确定挠度函数;然后根据公式计算广义力弯矩和扭矩;再根据公式确定薄板应力分量。§12.3薄板边界条件学习要点:薄板弯曲问题的解必须满足基本方程和给定的边界条件。由于薄板基本方程为一个四阶偏微分方程,因此对于矩形薄板,每个边界必须给出两个边界条件。薄板弯曲问题的典型边界条件形式可以分为几何边界条件、面力边界条件和混合边界条件。分别对应薄板的固定边界、自由边界和简支边界约束。由于薄板弯曲问题应用位移解法,因此,本节对于不同的边界约束,推导边界条件的挠度函数表达形式。应该注意的自由边界条件,由于自由边界属于面力边界,因此转换为位移边界条件时并不是完全独立的,必须作进一步的简化,特别是两个自由边界角点的约束变换。学习思路:1、典型边界条件形式;2、自由边界条件。1、典型边界条件形式薄板弯曲问题的解必须满足基本方程和给定的边界条件。由于方程为一个四阶偏微分方程,因此对于矩形薄板,每个边界必须给出两个边界条件。薄板弯曲问题的典型边界条件形式为1、几何边界条件:就是在边界上给定边界挠度w和边界切线方向转角,t为边界切线方向。112、面力边界条件:在边界给定横向剪力和弯矩。3、混合边界条件。在边界同时给出广义力和广义位移。以下讨论常见的边界支承形式和对应的边界条件:一、固定边界对于固定边界,如图所示显然有边界挠度和转角均为零的几何条件。因此,在x=0边界,有二、简支边界薄板在简支边界,不能有挠度,但是可以有微小的转动。因此边界条件为挠度为零和弯矩为零,属于混合边界条件。在x=0边界,有由于,同时在边界x=0,有。所以边界条件可以写作三、自由边界12对于自由边界在x=0边界,有上式给出了3个面力边界条件,进一步分析可以证明,这3个面力边界条件并不是独立的。其中扭矩可以用等效剪力来表示。作用在x=a边界上长度为dy的微单元体上的扭矩可以用两个大小相等,方向相反,相距的垂直剪力取代。显然这种代换是静力等效的根据圣维南原理,代换的影响仅仅是局部的。因此,代换后,两个微小单元之间增加一个集度为的剪力。因此边界x=a自由边界,总的分布剪力为13因此,边界条件可以改写作应该指出,如果相邻的两个边界都是自由边界,则扭矩用上述剪力等效替代时,在两个边界的角点将会出现没有抵消的集中剪力FSR,如果边界角点受到支承,这个集中剪力就是支座对于薄板的角点的集中反力,如图所示对于悬空的角点,由于边界角点B处于自由状态,因此有根据公式,有如果在角点有支座,而且挠度被阻止发生,有此时,支座反力可以根据公式计算。§12.4矩形薄板的经典解法14学习要点:本节以简支边界矩形薄板为例,说明薄板弯曲问题的求解方法。问题求解的方法比较多,本节介绍分离变量法。这种方法采用无穷级数形式求解,在一般条件下,级数的收敛很快。求解的方法是根据薄板变形,首先将挠度函数写作坐标x和y的函数乘积形式。然后将挠度函数分解为基本方程的特解和齐次方程解两部份,分别应用边界条件确定。学习思路:1、边界条件与挠度函数形式;2、挠度函数的分解;3、基本方程的齐次解和特解;4、薄板的挠度和最大挠度。1、边界条件与挠度函数形式下面以简支边界矩形薄板为例,说明薄板弯曲问题的求解方法。设矩形薄板边长分别为a和b,受均匀分布横向载荷q(x,y)作用,如图所示薄板的边界条件为因此,问题的求解归结为在满足上述边界条件求解基本方程薄板弯曲问题求解的方法比较多,以下介绍应用最广泛的分离变量法。这种方法采用无穷级数形式求解,在一般条件下,
本文标题:第12章-薄板的小挠度弯曲问题
链接地址:https://www.777doc.com/doc-8574251 .html