您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中文科数学选修1-1、1-2、4-4重要知识点(1)
选修1-1、1-2数学知识点第一部分简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论.3、原命题:“若p,则q”逆命题:“若q,则p”否命题:“若p,则q”逆否命题:“若q,则p”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.5、若pq,则p是q的充分条件,q是p的必要条件.若pq,则p是q的充要条件(充分必要条件).利用集合间的包含关系:例如:若BA,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;6、逻辑联结词:⑴且(and):命题形式pq;⑵或(or):命题形式pq;⑶非(not):命题形式p.pqpqpqp真真真真假真假假真假假真假真真假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“”表示;全称命题p:)(,xpMx;全称命题p的否定p:)(,xpMx。⑵存在量词——“存在一个”、“至少有一个”等,用“”表示;特称命题p:)(,xpMx;特称命题p的否定p:)(,xpMx;第二部分圆锥曲线1、平面内与两个定点1F,2F的距离之和等于常数(大于12FF)的点的轨迹称为椭圆.即:|)|2(,2||||2121FFaaMFMF。这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质:焦点的位置焦点在x轴上焦点在y轴上图形标准方程222210xyabab222210yxabab范围axa且bybbxb且aya顶点1,0a、2,0a10,b、20,b10,a、20,a1,0b、2,0b轴长短轴的长2b长轴的长2a焦点1,0Fc、2,0Fc10,Fc、20,Fc焦距222122FFccab对称性关于x轴、y轴、原点对称离心率22101cbeeaa3、平面内与两个定点1F,2F的距离之差的绝对值等于常数(小于12FF)的点的轨迹称为双曲线.即:|)|2(,2||||||2121FFaaMFMF。这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.4、双曲线的几何性质:焦点的位置焦点在x轴上焦点在y轴上图形标准方程222210,0xyabab222210,0yxabab范围xa或xa,yRya或ya,xR顶点1,0a、2,0a10,a、20,a轴长虚轴的长2b实轴的长2a焦点1,0Fc、2,0Fc10,Fc、20,Fc焦距222122FFccab对称性关于x轴、y轴对称,关于原点中心对称离心率2211cbeeaa渐近线方程byxaayxb5、实轴和虚轴等长的双曲线称为等轴双曲线.6、平面内与一个定点F和一条定直线l的距离相等的点的轨迹称为抛物线.定点F称为抛物线的焦点,定直线l称为抛物线的准线.7、抛物线的几何性质:标准方程22ypx0p22ypx0p22xpy0p22xpy0p图形顶点0,0对称轴x轴y轴焦点,02pF,02pF0,2pF0,2pF准线方程2px2px2py2py离心率1e范围0x0x0y0y8、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即2p.9、焦半径公式:若点00,xy在抛物线220ypxp上,焦点为F,则02pFx;若点00,xy在抛物线220xpyp上,焦点为F,则02pFy;第三部分导数及其应用1、函数fx从1x到2x的平均变化率:2121fxfxxx2、导数定义:fx在点0x处的导数记作xxfxxfxfyxxx)()(lim)(00000;.3、函数yfx在点0x处的导数的几何意义是曲线yfx在点00,xfx处的切线的斜率.4、常见函数的导数公式:①'C0;②1')(nnnxx;③xxcos)(sin';④xxsin)(cos';⑤aaaxxln)(';⑥xxee')(;⑦axxaln1)(log';⑧xx1)(ln'5、导数运算法则:1fxgxfxgx;2fxgxfxgxfxgx;320fxfxgxfxgxgxgxgx.6、在某个区间,ab内,若0fx,则函数yfx在这个区间内单调递增;若0fx,则函数yfx在这个区间内单调递减.7、求函数yfx的极值的方法是:解方程0fx.当00fx时:1如果在0x附近的左侧0fx,右侧0fx,那么0fx是极大值;2如果在0x附近的左侧0fx,右侧0fx,那么0fx是极小值.8、求函数yfx在,ab上的最大值与最小值的步骤是:1求函数yfx在,ab内的极值;2将函数yfx的各极值与端点处的函数值fa,fb比较,其中最大的一个是最大值,最小的一个是最小值.9、导数在实际问题中的应用:最优化问题。第四部分复数1.概念:(1)z=a+bi∈Rb=0(a,b∈R)z=zz2≥0;(2)z=a+bi是虚数b≠0(a,b∈R);(3)z=a+bi是纯虚数a=0且b≠0(a,b∈R)z+z=0(z≠0)z20;(4)a+bi=c+dia=c且c=d(a,b,c,d∈R);2.复数的代数形式及其运算:设z1=a+bi,z2=c+di(a,b,c,d∈R),则:(1)z1±z2=(a+b)±(c+d)i;(2)z1.z2=(a+bi)·(c+di)=(ac-bd)+(ad+bc)i;(3)z1÷z2=))(())((dicdicdicbiaidcadbcdcbdac2222(z2≠0);3.几个重要的结论:(1)ii2)1(2;⑷;11;11iiiiii(2)i性质:T=4;iiiiiinnnn3424144,1,,1;;03424144nnniiii(3)zzzzz111。4.运算律:(1));,())(3(;))(2(;2121Nnmzzzzzzzzzmmmmnnmnmnm5.共轭的性质:⑴2121)(zzzz;⑵2121zzzz;⑶2121)(zzzz;⑷zz。6.模的性质:⑴||||||||||||212121zzzzzz;⑵||||||2121zzzz;⑶||||||2121zzzz;⑷nnzz||||;第五部分统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系;②制作散点图,判断线性相关关系③线性回归方程:abxy(最小二乘法)1221niiiniixynxybxnxaybx注意:线性回归直线经过定点),(yx。2.相关系数(判定两个变量线性相关性):niniiiniiiyyxxyyxxr11221)()())((注:⑴r0时,变量yx,正相关;r0时,变量yx,负相关;⑵①||r越接近于1,两个变量的线性相关性越强;②||r接近于0时,两个变量之间几乎不存在线性相关关系。3.回归分析中回归效果的判定:⑴总偏差平方和:niiyy12)(⑵残差:iiiyye;⑶残差平方和:21)(niyiyi;⑷回归平方和:niiyy12)(-21)(niyiyi;⑸相关指数niiiniiiyyyyR12122)()(1。注:①2R得知越大,说明残差平方和越小,则模型拟合效果越好;②2R越接近于1,,则回归效果越好。4.独立性检验(分类变量关系):随机变量2K越大,说明两个分类变量,关系越强,反之,越弱。第六部分推理与证明一.推理:⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。注:归纳推理是由部分到整体,由个别到一般的推理。②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。注:类比推理是特殊到特殊的推理。⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。注:演绎推理是由一般到特殊的推理。“三段论”是演绎推理的一般模式,包括:⑴大前提---------已知的一般结论;⑵小前提---------所研究的特殊情况;⑶结论---------根据一般原理,对特殊情况得出的判断。二.证明⒈直接证明⑴综合法一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。⑵分析法一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。2.间接证明------反证法一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。选修4-4数学知识点一、选考内容《坐标系与参数方程》高考考试大纲要求:1.坐标系:①理解坐标系的作用.②了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.③能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.2.参数方程:①了解参数方程,了解参数的意义.②能选择适当的参数写出直线、圆和圆锥曲线的参数方程.二、知识归纳总结:1.伸缩变换:设点),(yxP是平面直角坐标系中的任意一点,在变换).0(,yy0),(x,x:的作用下,点),(yxP对应到点),(yxP,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。2.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。3.点M的极坐标:设M是平面内一点,极点O与点M的距离||OM叫做点M的极径,记为;以极轴Ox为始边,射线OM为终边的xOM叫做点M的极角,记为。有序数对),(叫做点M的极坐标,记为),(M.极坐标),(与)Z)(2,(kk表示同一个点。极点O的坐标为)R)(,0(.4.若0,则0,规定点),(与点),(关于极点对称,即),(与),(表示同一点。如果规定20,0,那么除极点外,平面内的点可用唯一的极坐标),(表示;同时,极坐标),(
本文标题:高中文科数学选修1-1、1-2、4-4重要知识点(1)
链接地址:https://www.777doc.com/doc-8595797 .html