您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 中考数学专题:锐角三角函数培优训练
锐角三角函数培优训练一、选择题1.(2019•湖南怀化)已知∠α为锐角,且sinα=12,则∠α=A.30°B.45°C.60°D.90°2.(2019·湖北宜昌)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为A.43B.34C.35D.453.(2019•山东威海)如图,一个人从山脚下的A点出发,沿山坡小路AB走到山顶B点.已知坡角为20°,山高BC=2千米.用科学计算器计算小路AB的长度,下列按键顺序正确的是A.B.C.D.4.(2020·扬州)如图,由边长为1的小正方形构成的网格中,点A、B、C都在格点上,以AB为直径的圆经过点C、D.则sin∠ADC的值为()A.21313B.31313C.23D.325.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长32m,某钓鱼者想看看鱼钩上的情况,把鱼竿AC转到AC′的位置,此时露在水面上的鱼线B′C′为33m,则鱼竿转过的角度是()A.60°B.45°C.15°D.90°6.(2020·凉山州)如图所示,△ABC的顶点在正方形网格的格点上,则tanA的值为()CBAA.12B.22C.2D.227.如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.12B.1C.3D.28.(2020·湖北荆州)如图,在6×6的正方形网格中,每个小正方形的边长都是1,点A,B,C均在网格交点上,⊙O是△ABC的外接圆,则cosBACÐ的值为()A.55B.255C.12D.329.如图,以O为圆心,半径为1的弧交坐标轴于A,B两点,P是AB︵上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)10.(2019·浙江温州)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为A.95sin米B.95cos米C.59sin米D.59cos米二、填空题11.已知α,β均为锐角,且满足|sinα-12|+(tanβ-1)2=0,则α+β=________.12.如图①是小志同学书桌上的一个电子相框,将其侧面抽象为如图②所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为________cm(参考数据:sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766.结果精确到0.1cm,可用科学计算器).13.如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为________海里.(结果取整数.参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4)14.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tanD=________.15.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:3≈1.73)16.(2020·苏州)如图,已知MON是一个锐角,以点O为圆心,任意长为半径画弧,分别交OM、ON于点A、B,再分别以点A、B为圆心,大于12AB长为半径画弧,两弧交于点C,画射线OC.过点A作ADON,交射线OC于点D,过点D作DEOC,交ON于点E.设10OA,12DE,则sinMON________.17.(2019•江苏宿迁)如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是__________.18.(2019·浙江舟山)如图,在△ABC中,若∠A=45°,AC2–BC255AB2,则tanC=__________.三、解答题19.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连接AG.(1)写出线段AG,GE,GF长度之间的等量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.20.(2019·本溪)小李要外出参加“建国70周年”庆祝活动,需网购一个拉杆箱,图①,②分别是她上网时看到的某种型号拉杆箱的实物图与示意图,并获得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,B,F在AC上,C在DE上,支杆DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°,请根据以上信息,解决下列问题.(1)求AC的长度(结果保留根号);(2)求拉杆端点A到水平滑杆ED的距离(结果保留根号).21.(2019•铜仁)如图,A、B两个小岛相距10km,一架直升飞机由B岛飞往A岛,其飞行高度一直保持在海平面以上的hkm,当直升机飞到P处时,由P处测得B岛和A岛的俯角分别是45°和60°,已知A、B、P和海平面上一点M都在同一个平面上,且M位于P的正下方,求h(结果取整数,3≈1.732)22.(2019·湖南常德)图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A处,手柄长AB=25cm,AB与墙壁DD′的夹角∠D′AB=37°,喷出的水流BC与AB形成的夹角∠ABC=72°,现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C处,且使DE=50cm,CE=130cm.问:安装师傅应将支架固定在离地面多高的位置?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).锐角三角函数培优训练-答案一、选择题1.【答案】A【解析】∵∠α为锐角,且sinα=12,∴∠α=30°.故选A.2.【答案】D【解析】如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC=22ADCD=2234=5.∴sin∠BAC=CDAC=45.故选D.3.【答案】A【解析】在△ABC中,sinA=sin20°=BCAB,∴AB=sin20BC=2sin20,∴按键顺序为:2÷sin20=,故选A.4.【答案】B【解析】本题考查了锐角三角函数的定义和圆周角的知识,解答本题的关键是利用圆周角定理把求∠ADC的正弦值转化成求∠ABC的正弦值.连接AC、BC,∵∠ADC和∠ABC所对的弧长都是AC,∴根据圆周角定理知,∠ADC=∠ABC,∴在Rt△ACB中,根据锐角三角函数的定义知,sin∠ABCACBC,∵AC=2,CB=3,∴AB13,∴sin∠ABC33131313,∴∠ADC的正弦值等于31313,因此本题选B.5.【答案】C【解析】∵sin∠CAB=BCAC=326=22,∴∠CAB′=45°,∵sin∠C′AB′=B′C′AC′=336=32,∴∠C′AB′=60°,∴∠CAC′=60°-45°=15°,即鱼竿转过的角度是15°.6.【答案】A【解析】如答图,连接BD(D、E均为格点),则DB⊥DE.EDCBA由勾股定理,得DB=2,AD=22.在Rt△ADB中,tanA=21222DBAD,故选A.7.【答案】D【解析】如解图,将AB平移到PE位置,连接QE,则PQ=210,PE=22,QE=42,∵△PEQ中,PE2+QE2=PQ2,则∠PEQ=90°,∴tan∠QMB=tan∠P=QEPE=2.8.【答案】B【解析】过A点作BC的垂线,垂足为D,∵每个小正方形的边长都是1,点A,B,C均在网格交点上,∴AD=1,CD=3,∴223110AC=+=,过点B作AC的垂线,垂足为E,∴BEACBCADSABC2121,即BE10212121,∴105BE=.在RtABDD中,22112AB=+=,在RtABED中,AE=5102)510()2(22,∴cos∠BAC=55225102ABAE.9.【答案】C【解析】如解图,过点P作PC⊥OB于点C,则在Rt△OPC中,OC=OP·cos∠POB=1×cosα=cosα,PC=OP·sin∠POB=1×sinα=sinα,即点P的坐标为(cosα,sinα).10.【答案】B【解析】如图,作AD⊥BC于点D,则BD320.395,∵cosαBDAB,∴cosα95AB,解得AB95cos米,故选B.二、填空题11.【答案】75°【解析】由于绝对值和算术平方根都是非负数,而这两个数的和又为零,于是它们都为零.根据题意,得|sinα-12|=0,(tanβ-1)2=0,则sinα=12,tanβ=1,又因为α、β均为锐角,则α=30°,β=45°,所以α+β=30°+45°=75°.12.【答案】14.1【解析】如解图,过点B作BE⊥CD于点E,∵BC=BD=15cm,∠CBD=40°,∴∠CBE=20°,在Rt△CBE中,BE=BC·cos∠CBE≈15×0.940=14.1(cm).13.【答案】11【解析】∵∠A=30°,∴PM=12PA=9海里.∵∠B=55°,sinB=PMPB,∴0.8=9PB,∴PB≈11海里.14.【答案】22【解析】如解图,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴BC=AB2-AC2=62-22=42,∵∠D=∠A,∴tanD=tanA=BCAC=422=22.15.【答案】208【解析】在Rt△ABD中,BD=AD·tan∠BAD=90×tan30°=303,在Rt△ACD中,CD=AD·tan∠CAD=90×tan60°=903,BC=BD+CD=303+903=1203≈208(米).16.【答案】【答案】242517.【答案】3BC23【解析】如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2,在Rt△ABC1中,AB=2,∠A=60°,∴∠ABC1=30°,∴AC1=12AB=1,由勾股定理得:BC1=3,在Rt△ABC2中,AB=2,∠A=60°,∴∠AC2B=30°,∴AC2=4,由勾股定理得:BC2=23,当△ABC是锐角三角形时,点C在C1C2上移动,此时3BC23.故答案为:3BC23.18.【答案】5【解析】如图,过B作BD⊥AC于D,∵∠A=45°,∴∠ABD=∠A=45°,∴AD=BD.∵∠ADB=∠CDB=90°,∴AB2=AD2+DB2=2BD2,BC2=DC2+BD2,∴AC2–BC2=(AD+DC)2–(DC2+BD2)=AD2+DC2+2AD•DC–DC2–BD2=2AD•DC=2BD•DC,∵AC2–BC255AB2,∴2BD•DC552BD2,∴DC55BD,∴tan555BDBDCDCBD.故答案为:5.三、解答题19.【答案】【思维教练】求三条线段之间的关系,一般是线段的和差关系或线段平方的和差关系.由ABCD是正方形,BD是角平分线,可想到连接CG,易得CG=AG,再由四边形CEGF是矩形可得AG2=GE2+GF2;(2)给出∠AGF=105°,可得出∠AGB=60°,再由∠ABG=45°,可想到过点A作BG的垂线,交BG于点M,分别在两个直角三角形中得出BM和MG的长,相加即可得出BG的长.解:(1)AG2=GE2+GF2;(1分)理由:连结CG,∵ABCD是正方形,∴∠ADG=∠CDG=45°,AD=CD,DG=DG,∴△ADG≌△CDG,(2分)∴AG=CG,又∵GE⊥DC,GF⊥BC,∠GFC=90°,∴四边形CEGF是矩形,(3分)∴CF=GE,在直角△GFC中,由勾股定
本文标题:中考数学专题:锐角三角函数培优训练
链接地址:https://www.777doc.com/doc-8596562 .html