您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 其它文档 > 纤维布加固素混凝土方柱轴压力学性能尺寸效应研究
华东交通大学硕士学位论文纤维布加固素混凝土方柱轴压力学性能尺寸效应研究姓名:朱毅申请学位级别:硕士专业:岩土工程指导教师:童谷生20080415IFRPFRPFRPFRPFRPFRPFRPFRPFRP(1)FRP-FRPFRPFRPFRP-(2)927BFRP-(3)BFRP(4)-AbstractIITHESTUDYONSIZEEFFECTOFCONCRETESQUARECOLUMNBYFIBERREINFORCEDPOLYERABSTRACTWiththewideusageoffiberreinforcedpolymer(FRP)incivilengineeringconstructionsinrecentyears,theresearchofFRPreinforcingconcretestructureshasreceivedsignificantattentionsinthefieldofstrengtheningconcretestructures.Comparedwiththeclassicalreinforcingmethods,FRPreinforcingconcretestructureshasmanyadvantagessuchashighefficiencyandhighstrength,convenienttoconstruct,goodresistancetocorrosionandfatigue,lightweighandwithoutadditionaldimension,whichcanbewidelyusedinmanyaspectssuchasflexure,shear,torsion,anti-seismic,andanti-corrosionconstructions.Forasizeeffectproblemtothecommonconcretestrength,currentlyalreadyhadachaptercanfollow,thenormhadprescribedthestrengthofthedifferentsize.WiththedevelopmentofFRPreinforcedconcreteinrecentyears,thedifferentmechanicalperformancebetweennormalconcreteandreinforcedconcrete,andthestudyofthemechanicalbehaviorbecomemosturgency.InordertoresearchthesizeeffectofFRPconfinedtheplainsquarecolumn,thepaperdon’tresearchthereinforcingbar.Themainaspectsoftheresearchworkareasfollows:(1)Currently,thestress-strainmodelingofFRPconfinedconcreteisbuiltonthecylindricalcolumnnotsquarecolumn,thepaperhavepredictedanewmodelingwhichcandirectlyusedintheBFRPconfinedplainconcretesquarecolumns.(2)StudyingoftherelationshipbetweenstressandstrainofBFRPconfiningplainconcretesquarecolumnsthrough9groupsofspecimenssubjectedtoaxialload.VariousdesignparameterssuchasamountsofBFRPsheets,anddifferentsizeofspecimenshavebeenconsidered.(3)Studyingofultimatestrengthandstrainthroughthreedifferentsizespecimensunderaxialload,andputforwardtherelationshipbetweendifferentsizespecimens.(4)Comparedwithexperimentvalueandcalculationvalue,theLamandTengmodelingcaneffectivelycomputeanextremeultimatestrengthofFRPreinforcingtheconcrete.KEYWORDSconfined,sizeeffect,analysis-orientedmodel,Mechanicalperformance,stress-strain10cfc0εccfccεuεNσfrpEFRPfrpεFRPchllfElEcθεrεfrpfFRPfrptFRPLdDfrpρFRP1k2ksecEcνkσkεbckf,cukfα____________________________________________________________380(FiberReinforcedPolymers/Plastics,FRP)[1]1.1FRPFRPFRPFRPFRPFRP-FRPFRP1.24[2]1.2.1[3](1)(2)(3)(4)(5)(6)1.2.25[4]15LeonardodaVinciGriffithGriffith…………1020GriffithGriffith2080Griffith1960IrwinKaplan1976HillerborgFCM(FictitiousCrackModel)1979RILEMWeibullKaplanKesler,NausLott1971Walsh19721976Walsh-1/2Hillerborg6WeibullZ.P.BazantA.Carpinteri1.2.3(1)Weibull(2)(3)(4)(5)(6)(7)(1)Weibull1926PeirceTippett1925Weibull1939[5]:FreudenthalWeibullWeibull(2)BazantZ.P.Bazant(3)Carpinteri7A.Carpinter[6]1.2.4Gonnerman1925(1)WeibullP.C.AticinM.LessardD2DDBazantXiang2510NuCDCσ−=+(1-1)0C1C(1-1)Kim(ASTM)800.40.8150ccfffhd=+−−(1-2)0fdcfhd(2)Carpinteri5cm4.33MPa40cm3.17MPa().(3)91.31.3.11)2)3)4)10C205)C1560C70%6)7)FRPFRP(CFRP)(GFRP)(BFRP)(AFRP)1.3.2(1)(2)(3)11(4)(5)1.41.4.1FRP-1-1-Fig.1-1Stress-strainrelationshipcurveofconcrete121-1-1.4.2FRP(a)(b)(c)(1)(1-2a)(1-2b)(1-2c)(a)(b)(c)(a)FRP(b)FRP(c)FRP1-2FRPFig.1-2MethodsofFRPreinforcedwrap(2)FRP(3)FRPFRP1-1FRPFRP1-3131-1(a)(b)1-3Fig.1-3Changedshapeofreinforcedrectanglepillar1.51.5.1-Nanni[7]Katsumata[8]8~22%1988Mander[9,10]FRPSaudi[11]14CFRPCFRP-Chaallal[12]CFRPCFRPCFRPCFRPCFRP[1320]1.5.21996FRP[212223]--[2425]164Mander-[26][27]33[28][29]51999200320061.5.315[30][31][32]FRP[53]FRPFRP1.5.4FRPFRP[33,34](1)FRPFRP(2)FRPFRP5%50%(3)FRPFRPFRP(4)FRP300(5)FRP(6)16(7)1.6FRPFRPMasia[35]FRP150×150100×10064%FRPFRPFRP1.7FRPFRP(1)(2)FRP-FRP-17(3)27BFRP-(4)FRPFRP18FRP2090FRPFRPFRP-FRP-FRP-FRPFRP-2.1FRP2.1.1FRPFRP2.1.2FRP'1''1cclcocoffkff=+2-1'ccf'coflfFRP1kRichartetal.(1928)1k4.1FRP2-11k2-1FRP192-1FRPKarbhariandGao(1997)Samaanetal.(1998)Miyauchietal.(1999)Saafietal.(1999)Toutanji(1999)'1''1cclcocoffkff=+1k0.13'2.1()lcoff−0.36.0lf−2.980.16'2.2()lcoff−0.15'3.5()lcoff−Mirmiranetal.(1998a)/Ld''22:1[0.0288()0.263()1.418]ccccLLffdd=−+2-2'2:1ccf/Ld=2KarbhariandGao(1997)'''223.1frpfrpfrpfrpcccococctEftfffdEdν=++(2-3)cνcEfrpEFRPManderetal.(1998)FRP(Saadatmaneshetal.1994,PurbaandMufti1999,SpoelstraandMonti1999)''''7.941.2542.25412ccllcococoffffff=−++−(2-4)LamandTeng12cclcocoffff=+(2-5)2.1.3FRPFRPFRPSpoelstraandMonti(1999)FRP20pk'2cclpcocofkfεε=+(2-6)'/2/cccoplcokffεε−=(2-7)ccεcoεLamandTengCFRPGFRPCFRP'215cclcocoffεε=+(2-8)GFRP0.7'227()cclcocoffεε=+(2-9)2.2FRP-2.2.1-(1)FRPKono1998[37],LinChen2001[38],Vintzileou2001[39]LamTeng2002[40]Pan2002[41]Shehata2002[42]IlkiKumbasar2002[43]IlkiKumbasar2003[44]DeLorenzisTepfers2003[45](2)FRP--FRP21-FardisKhalili1981[46]FardisKhalili1982[47]KarbhariGao1997[48]Arduini1999[49]Miyauchi1999[50]XiaoWu2000FRP-FRP-Miyauchi1999XiaoWu2000--(3)FRP---MirmiranShahawy1996[51]Harmon1998[52]SpoelstraMonti1999[53]FamRizkalla2001[54]KarabinisRousakis2002[55]Becque2003[56]FRP--FRP-FRPFRPFRP--FRP22FRP(4)-FRP--[57-64]-FRP-2.2.2-FRP-FRP-(1)FardisandKhaliliFRPFardisandKhalili(1982)FRP''1(/1/)cccccccccEEfεσεε=+−(2-10)'''[14.1()]ccclcffff=++'ccfFRPc
本文标题:纤维布加固素混凝土方柱轴压力学性能尺寸效应研究
链接地址:https://www.777doc.com/doc-860638 .html