您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 21届中考数学第一次模拟卷-3含解析
武汉市2021届九年级四月调考数学模拟试卷(五)一、选择题(共10小题,每小题3分,共30分)1.实数-2021的负倒数是()A.02121B.02121C.2021D.-20212.式子3-3x在实数范围内有意义,则x的取值范围是()A.x≥0B.x≥1C.x≥-1D.x≤-13.下列说法中,正确的是()A.“打开电视,正在播放湖北新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.“明天降雨的概率是50%表示明天有半天都在降雨”D.“掷一次骰子,向上一面的数字是2”是随机事件4.下列四个图形中,既是轴对称图形又是中心对称图形的是()伟大中华ABCD5.如图是由几个相同的小正方体组成立体图形的俯视图,数字表示其位置上的小正方体的个数,则该立方体的主视图是()ABCD6.在5瓶饮料中,有3瓶已过保质期,从这5瓶饮料中任取2瓶,取到没有过保质期饮料的概率为()A.21B.14C.101D.187.如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,43OBOA.∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数xky的图象过点C.当以CD为边的正方形的面积为72时,k的值是()A.2B.3C.5D.78.小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5h到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮9.如图,点A在半径为3的⊙O内,OA=3,P为⊙O上一点,延长PO、PA交⊙O于M、N.当MN取最大值上,PA的长等于()A.32B.62C.6D.3310.如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种二、填空题(共6小题,每小题3分,共18分)11.计算22-=__________.12.甲盒子中有编号为1、2的2个白色乒乓球,乙盒子中有编号为4、5的2个黄色乒乓球.现分别从每个盒子中随机地取出1个乒乓球,则取出乒乓球的编号之和大于6的概率为.13.计算:=_________.2421422aaa14.如图,在ΔABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=37°,则∠BAC=.15.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2.给出下列结论:①abc>0,②a﹣b+c<0,③2a+b<0,④1<a+b+2c<2,⑤4a+b<﹣2.其中正确结论的个数是.16.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,I为△ABC的内心,且OI⊥AI.若AB=10,则BI的长为.ECDBAECDBAEDCBA三、解答题(共8题,共72分)17.(本题8分)化简:18.(本题8分)如图,AB∥FC,点D在AB上,DF交AC于E,DE=FE求证:AE=CE.19.(本题8分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)求扇形统计图扇形D的圆心角的度数;(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?23422515205mmnmm20.(本题8分)如图,在▱ABCD中,点E在BC上,AB=BE,BF平分∠ABC交AD于点F,请用无刻度的直尺画图(保留作图痕迹,不写画法).(1)在图1中,过点A画出△ABF中BF边上的高AG;(2)在图2中,过点C画出C到BF的垂线段CH.21.(本题8分)已知A,B,C,D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.22.(本题10分)某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.23.(本题10分)在△ABC中,AB=AC,点D在底边BC上,∠EDF的两边分别交AB、AC所在直线于E,F两点,∠EDF=2∠ABC,BD=nCD.(1)如图1,若∠ABC=45°,n=1,求证:DE=DF;(2)如图2,求DEDF的值(含n的式子表示):(3)如图3,连接EF,若tan∠B=1,EF∥BC,且58EFBC,直接写出n的值为.24.(本题12分)24.如图1,若二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0)、B,与y轴交于点C(0,4),连接AC、BC,且抛物线的对称轴为直线x=.(1)求二次函数的解析式;(2)若点P是抛物线在一象限内BC上方一动点,且点P在对称轴的右侧,连接PB、PC,是否存在点P,使S△PBC=S△ABC?若存在,求出点P的坐标;若不存在,说明理由;(3)如图2,若点Q是抛物线上一动点,且满足∠QBC=45°﹣∠ACO,请直接写出点Q坐标.参考答案一、选择题(共10小题,每小题3分,共30分)题号12345678910答案ABDCBCDDCC二、填空题(共6小题,每小题3分,共18分)11.212.4113.21a14.32°15.①②③16.10216.提示:延长AI交⊙O于M,连接BM∵AB是⊙O的直径∴∠AMB=90°∵I为△ABC的内心∴∠IAO=∠IAC=∠CBM,∠IBO=∠IBC∵∠MIB=∠IAO+∠IBA,∠MBI=∠CBM+∠IBC∴∠MIB=∠MBI∴IM=BM=AI设BM=x则x2+(2x)2=102,x=52∴1022BMBI三、解答题(本大题满分72分)17.解:原式2435mmn………………………….8分,结果不对不给分18.解:略19.解:(1)略(2)27度(3)180020.解:(1)如图1,AG即为所求.(2)如图2,连接AC,BD交于点O,作射线EO,交AD于G,连接CG,交BF于H,则CH即为所求.理由是:如图3,连接AE,∵四边形ABCD是平行四边形,∴OA=OC,AG∥CE,∴∠AGO=∠CEO,∵∠AOG=∠COE,∴△AOG≌△COE(AAS),∴OG=OE,∴四边形AECG是平行四边形,∴AE∥CG,∵AE⊥BF,∴CG⊥BF,即CH⊥BF.21.解:(1)∵∠ADC=∠BCD=90°,∴AC、BD是⊙O的直径,∴∠DAB=∠ABC=90°,∴四边形ABCD是矩形,∵AD=CD,∴四边形ABCD是正方形,∴AC⊥BD;(2)连结DO,延长交圆O于F,连结CF、BF.∵DF是直径,∴∠DCF=∠DBF=90°,∴FB⊥DB,又∵AC⊥BD,∴BF∥AC,∠BDC+∠ACD=90°,∵∠FCA+∠ACD=90°∴∠BDC=∠FCA=∠BAC∴等腰梯形ACFB∴CF=AB.根据勾股定理,得CF2+DC2=AB2+DC2=DF2=20,∴DF=,∴OD=,即⊙O的半径为.22.解:(1)①当2≤x<8时,如图,设直线AB解析式为:y=kx+b,将A(2,12)、B(8,6)代入得:,解得,∴y=﹣x+14;②当x≥8时,y=6.所以A类杨梅平均销售价格y与销售量x之间的函数关系式为:y=;(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,wA=x(﹣x+14)﹣x=﹣x2+13x;wB=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=wA+wB﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,wA=6x﹣x=5x;wB=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=wA+wB﹣3×20=(5x)+(108﹣6x)﹣60=﹣x+48.∴w关于x的函数关系式为:w=.②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]万元,∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,wA=x(﹣x+14)﹣x=﹣x2+13x;wB=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=wA+wB﹣3×m=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;②当x≥8时,wA=6x﹣x=5x;wB=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=wA+wB﹣3×m=(5x)+(6m﹣6x﹣12)﹣3m=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.23.解:(1)证明:如图1中,连接AD.∵AB=AC,∴∠ABC=∠C=45°,∵BD=nCD,n=1,∴BD=CD,∴AD⊥BC,∠DAC=∠DAB=45°,AD=DB=DC,∵∠EDF=2∠ABC=90°,∴∠BDA=∠EDF=90°,∴∠BDE=∠ADF,∵∠B=∠DAF,BD=AD,∴△BDE≌△ADF(SAS),∴DE=DF.(2)解:在射线B上取一点T,使得DB=DT.∵DB=DT,∴∠B=∠T,∴∠TDC=∠B+∠T=2∠B,∵∠EDF=2∠B,∴∠EDF=∠TDC,∴∠EDT=∠DFC,∵∠BAC+2∠B=180°,∴∠BAC+∠DEF=180°,∴∠TED+∠AFD=180°,∵∠DFC+∠AFD=180°,∴∠TED=∠DFC,∴△TED∽△FDC,∴DEDTDBnDFDCCD.(3)如图3中,作ET⊥BC于E,FH⊥BC于H.∵EF∥BC,ET∥FH,∴四边形EFHT是平行四边形,∵∠ETH=90°,∴四边形EFHT是矩形,∴ET=FH,EF=TH,∵EF:BC=5:8,设EF=5k,BC=8k,则TH=5k,∵tanB=1,∴∠B=∠C=45°,∵∠ETB=∠FHC=90°,∴ET=BT=FH=CH=1.5k,设DT=x,则DH=5K﹣x,∵∠EDF=2∠B=90°,∠ETD=∠FHD=90°,∴∠EDT+∠FDH=90°,∠TED+∠EDT=90°,∴∠TED=∠FDH,∴△ETD∽△DHF,∴ETDTDHFH,∴1.551.5kxkxk,∴x2﹣5kx+2.25k2,解得x=0.5k或4.5k,∴BD=2k或6k,∴BD:DC=2k:6k=1:3或BD:DC=6k:2k=3:1.∴n=3或.24.解
本文标题:21届中考数学第一次模拟卷-3含解析
链接地址:https://www.777doc.com/doc-8614429 .html