您好,欢迎访问三七文档
圆锥曲线专题第1讲椭圆一、知识体系二、知识清单1.椭圆的定义条件结论1结论2平面内的动点M与平面内的两个定点F1,F2M点的轨迹为椭圆F1、F2为椭圆的焦点|MF1|+|MF2|=2a|F1F2|为椭圆的焦距2a>|F1F2|2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:x轴、y轴对称中心:(0,0)顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长轴A1A2的长为2a短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca,e∈(0,1)a,b,c的关系c2=a2-b2补充:3.辨明两个易误点(1)椭圆的定义中易忽视2a>|F1F2|这一条件,当2a=|F1F2|时,其轨迹为线段F1F2,当2a<|F1F2|时,不存在轨迹.(2)求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x2a2+y2b2=1(a>b>0).4.求椭圆标准方程的两种方法(1)定义法:根据椭圆的定义,确定a2,b2的值,结合焦点位置可写出椭圆方程.(2)待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求出a、b;若焦点位置不明确,则需要分焦点在x轴上和y轴上两种情况讨论,也可设椭圆的方程为Ax2+By2=1(A>0,B>0,A≠B).三、题型突破(经典、重点、难点)(一)椭圆的定义及应用方法点睛(1)椭圆定义的应用范围①确认平面内与两定点有关的轨迹是否为椭圆.②解决与焦点有关的距离问题.(2)焦点三角形的应用椭圆上一点P与椭圆的两焦点F1,F2组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求|PF1||PF2|;通过整体代入可求其面积等经典练习1.已知椭圆C:x2a2+y2b2=1(ab0)的左、右焦点为F1,F2,离心率为33,过F2的直线l交C于A,B两点.若△AF1B的周长为43,则C的方程为()A.x23+y22=1B.x23+y2=1C.x212+y28=1D.x212+y24=12.(2017·徐州模拟)已知F1、F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为椭圆C上的一点,且PF1⊥PF2,若△PF1F2的面积为9,则b=________.3.若2中增加条件“△PF1F2的周长为18”,其他条件不变,求该椭圆的方程.4.设F1,F2是椭圆x29+y24=1的两个焦点,P是椭圆上的一点,且|PF1|∶|PF2|=2∶1,则△PF1F2的面积为()A.4B.6C.22D.425.已知两圆C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,动圆在圆C1内部且和圆C1相内切,和圆C2相外切,则动圆圆心M的轨迹方程为________.(二)椭圆的标准方程方法点睛经典练习1.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1(6,1),P2(-3,-2),则该椭圆的方程为________.2.已知椭圆C1:x24+y2=1,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率.则椭圆C2的方程为________.(三)椭圆的几何性质方法点睛1.椭圆的几何性质是高考的热点,高考中多以小题出现,试题难度一般较大.高考对椭圆几何性质考查主要有以下三个命题角度:(1)利用椭圆性质求椭圆方程;(2)由椭圆的性质求参数的值或范围;(3)求离心率的值或范围.2.求椭圆离心率的方法①直接求出a,c的值,利用离心率公式直接求解.②列出含有a,b,c的齐次方程(或不等式),借助于b2=a2-c2消去b,转化为含有e的方程(或不等式)求解.3.利用椭圆几何性质的技巧求解与椭圆几何性质有关的问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的内在联系.经典练习1.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于12,则C的方程是()A.x23+y24=1B.x24+y23=1C.x24+y22=1D.x24+y23=12.(2017·合肥质检)如图,焦点在x轴上的椭圆x24+y2b2=1的离心率e=12,F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则PF→·PA→的最大值为________.3.(2016·高考全国卷丙)已知O为坐标原点,F是椭圆C:x2a2+y2b2=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.13B.12C.23D.34(四)直线与椭圆的位置关系方法点睛(1)直线与椭圆位置关系判断的步骤①联立直线方程与椭圆方程;②消元得出关于x(或y)的一元二次方程;③当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.(2)直线被椭圆截得的弦长公式设直线与椭圆的交点为A(x1,y1)、B(x2,y2),则|AB|=(1+k2)[(x1+x2)2-4x1x2]=1+1k2[(y1+y2)2-4y1y2](k为直线斜率,k≠0).经典练习1.已知椭圆x2a2+y2b2=1(a>b>0)的左焦点为F(-c,0),离心率为33,点M在椭圆上且位于第一象限,直线FM被圆x2+y2=b24截得的线段的长为c,|FM|=433.(1)求直线FM的斜率;(2)求椭圆的方程.2.(2016·高考全国卷甲)已知A是椭圆E:x24+y23=1的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(1)当|AM|=|AN|时,求△AMN的面积;(2)当2|AM|=|AN|时,证明:3<k<2.四、对接高考(2017·高考全国卷丙)已知椭圆C:x2a2+y2b2=1(ab0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为()A.63B.33C.23D.13(2017·高考北京卷)已知椭圆C的两个顶点分别为A(-2,0),B(2,0),焦点在x轴上,离心率为32.(1)求椭圆C的方程;(2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4∶5.
本文标题:高中数学曲线与方程
链接地址:https://www.777doc.com/doc-8616667 .html