您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 01全国高中数学联赛试题及详细解析
二○○一年全国高中数学联赛(10月4日上午8:00—9:40)题号[来源:学科网ZXXK]一[来源:学科网][来源:学科网]二[来源:学科网ZXXK]三合计加试[来源:学科网ZXXK]总成绩131415得分评卷人复核人学生注意:1、本试卷共有三大题(15个小题),全卷满分150分。2、用圆珠笔或钢笔作答。3、解题书写不要超过装订线。4、不能使用计算器。一、选择题(本题满分36分,每小题6分)本题共有6个小是题,每题均给出(A)(B)(C)(D)四个结论,其中有且仅有一个是正确的。请将正确答案的代表字母填在题后的括号内,每小题选对得6分;不选、选错或选的代表字母超过一个(不论是否写在括号内),一律得0分。1、已知a为给定的实数,那么集合M={x|x2-3x-a2+2=0,x∈R}的子集的个数为(A)1(B)2(C)4(D)不确定5.若(1+x+x2)1000的展开式为a0+a1x+a2x2+…+a2000x2000,则a0+a3+a6+a9+…+a1998的值为().(A)3333(B)3666(C)3999(D)320016.已知6枝玫瑰与3枝康乃馨的价格之和大于24,而4枝攻瑰与5枝康乃馨的价格之和小于22元,则2枝玫瑰的价格和3枝康乃馨的价格比较,结果是().(A)2枝玫瑰价格高(B)3枝康乃馨价格高(C)价格相同(D)不确定二、填空题(本题满分54分,每小题9分)7.椭圆ρ=1/(2-cosθ)的短轴长等于______________.8、若复数z1,z2满足|z1|=2,|z2|=3,3z1-2z2=23-I,则z1z2=。9、正方体ABCD—A1B1C1D1的棱长为1,则直线A1C1与BD1的距离是。10、不等式232log121x的解集为。11、函数232xxxy的值域为。14、设曲线C1:1222yax(a为正常数)与C2:y2=2(x+m)在x轴上方公有一个公共点P。(1)求实数m的取值范围(用a表示);(2)O为原点,若C1与x轴的负半轴交于点A,当0a21时,试求⊿OAP的面积的最大值(用a表示)。15、用电阻值分别为a1、a2、a3、a4、a5、a6、(a1a2a3a4a5a6)的电阻组装成一个如图的组件,在组装中应如何选取电阻,才能使该组件总电阻值最小?证明你的结论。二○○一年全国高中数学联合竞赛加试试题(10月4日上午10:00—12:00)学生注意:1、本试卷共有三大题,全卷满分150分。2、用圆珠笔或钢笔作答。3、解题书写不要超过装订线。4、不能使用计算器。一、(本题满分50分)如图:⊿ABC中,O为外心,三条高AD、BE、CF交于点H,直线ED和AB交于点M,FD和AC交于点N。求证:(1)OB⊥DF,OC⊥DE;(2)OH⊥MN。二、(本题满分50分)设xi≥0(I=1,2,3,…,n)且12112njkjkniixxjkx,求niix1的最大值与最小值。三、(本题满分50分)将边长为正整数m,n的矩形划分成若干边长均为正整数的正方形,每个正方形的边均平行于矩形的相应边,试求这些正方形边长之和的最小值。2001年全国高中数学联合竞赛试题参考答案及评分标准一.选择题:CBDDCA2.命题1:长方体中,必存在到各顶点距高相等的点.命题2:长方体中,必存在到各条棱距离相等的点;命题3:长方体中,必存在到各个面距离相等的点.以上三个命题中正确的有().A.0个B.1个C.2个D.3个【答案】B【解析】由于长方体的中心到各顶点的距离相等,所以命题1正确.对于命题2和命题3,一般的长方体(除正方体外)中不存在到各条棱距离相等的点,也不存在到各个面距离相等的点.因此,本题只有命题1正确,选B.4.如果满足∠ABC=60°,AC=12,BC=k的△ABC恰有一个,那么k的取值范围是().A.38kB.0<k≤12C.k≥12D.0<k≤12或38k【答案】D【解析】这是“已知三角形的两边及其一边的对角,解三角形”这类问题的一个逆向问题,由课本结论知,应选结论D.说明:本题也可以通过画图直观地判断,还可以用特殊值法排除A、B、C.5.若(1+x+x2)1000的展开式为a0+a1x+a2x2+…+a2000x2000,则a0+a3+a6+a9+…+a1998的值为().A.3333B.3666C.3999D.32001【答案】C6.已知6枝玫瑰与3枝康乃馨的价格之和大于24,而4枝攻瑰与5枝康乃馨的价格之和小于22元,则2枝玫瑰的价格和3枝康乃馨的价格比较,结果是().A.2枝玫瑰价格高B.3枝康乃馨价格高C.价格相同D.不确定【答案】A二.填空题7.3328.i137213309.6610.),4()2,1()1,0(7211.),2[)23,1[12.7327.椭圆ρ=1/(2-cosθ)的短轴长等于______________.【答案】3328.若复数z1、z2满足|z1|=2,|z3|=3,3z1-2z2=(3/2)-i,则z1·z2=______________.【答案】30721313isin(α+β)=12/13,cos(α+β)=-5/13.故z1·z2=6[cos(α+β)+isin(α+β)]=-(30/13)+(72/13)i.说明:本题也可以利用复数的几何意义解.10.不等式|(1/log1/2x)+2|>3/2的解集为______________.【答案】x>4,或1<x<22/7,或0<x<1.【解析】从外形上看,这是一个绝对值不等式,先求得log1/2x<-2,或-2/7<log1/2x<0,或log1/2x>0.从而x>4,或1<x<22/7,或0<x<1.11.函数y=x+的值域为______________.【答案】[1,3/2)∪[2,+∞).【解析】先平方去掉根号.由题设得(y-x)2=x2-3x+2,则x=(y2-2)/(2y-3).由y≥x,得y≥(y2-2)/(2y-3).解得1≤y<3/2,或y≥2.由于能达到下界0,所以函数的值域为[1,3/2)∪[2,+∞).说明:(1)参考答案在求得1≤y<3/2或y≥2后,还用了较长的篇幅进行了一番验证,确无必要.(2)本题还可以用三角代换法和图象法来解,不过较繁,读者不妨一试.12.在一个正六边形的六个区域栽种观赏植物(如图3),要求同一块中种同一种植物,相邻的两块种不同的植物.现有4种不同的植物可供选择,则有______________种栽种方案.【答案】732【解析】为了叙述方便起见,我们给六块区域依次标上字母A、B、C、D、E、F.按间隔三块A、C、E种植植物的种数,分以下三类.三.解答题13.【解析】设所求公差为d,∵a1<a2,∴d>0.由此得412121)()2(dadaa化简得:0422121ddaa14.【解析】(1)由)(212222mxyyax消去y得:0222222amaxax①设222222)(amaxaxxf,问题(1)化为方程①在x∈(-a,a)上有唯一解或等根.只需讨论以下三种情况:1°△=0得:212am,此时xp=-a2,当且仅当-a<-a2<a,即0<a<1时适合;2°f(a)f(-a)<0,当且仅当-a<m<a;3°f(-a)=0得m=a,此时xp=a-2a2,当且仅当-a<a-2a2<a,即0<a<1时适合.f(a)=0得m=-a,此时xp=-a-2a2,由于-a-2a2<-a,从而m≠-a.综上可知,当0<a<1时,212am或-a<m≤a;当a≥1时,-a<m<a.15.【解析】设6个电阻的组件(如图3)的总电阻为RFG,当Ri=ai,i=3,4,5,6,R1、R2是a1、a2的任意排列时,RFG最小证明如下:1.设当两个电阻R1、R2并联时,所得组件阻值为R,则21111RRR.故交换二电阻的位置,不改变R值,且当R1或R2变小时,R也减小,因此不妨取R1>R2.2.设3个电阻的组件(如图1)的总电阻为RAB2132312132121RRRRRRRRRRRRRRAB显然R1+R2越大,RAB越小,所以为使RAB最小必须取R3为所取三个电阻中阻值最小的—个.4°对于图3把由R1、R2、R3组成的组件用等效电阻RAB代替.要使RFG最小,由3°必需使R6<R5;且由1°应使RCE最小.由2°知要使RCE最小,必需使R5<R4,且应使RCD最小.而由3°,要使RCD最小,应使R4<R3<R2且R4<R3<R1,这就说明,要证结论成立2001年全国高中数学联合竞赛加试参考答案及评分标准另证:以BC所在直线为x轴,D为原点建立直角坐标系,设A(0,a),B(b,0),C(c,0),则bakcakABAC,∴直线AC的方程为)(cxcay,直线BE的方程为)(bxacy由)()(cxcaybxacy得E点坐标为E(2222222,caabcaccabcca)同理可得F(2222222,baabcabbacbba)直线AC的垂直平分线方程为)2(2cxacay直线BC的垂直平分线方程为2cbx由2)2(2cbxcxacay得O(aabccb2,22)bcaacabcbbaabcabkabacabcbcbaabckDFOB222222,22∵1DFOBkk∴OB⊥DF二.【解析】先求最小值,因为niinjkjkniiniixxxjkxx11122112)(≥1等号成立当且仅当存在i使得xi=1,xj=0,j=i∴niix1最小值为1.再求最大值,令kkykx∴nknjkjkkykyky11212①设nknkkkykxM11,令nnnnayayyayyy22121则①⇔122221naaa令1na=0,则nkkkaakM11)(nknknknknkkkkkkakkakakakak111111)1(1三.【解析】记所求最小值为f(m,n),可义证明f(m,n)=rn+n-(m,n)(*)其中(m,n)表示m和n的最大公约数事实上,不妨没m≥n(1)关于m归纳,可以证明存在一种合乎题意的分法,使所得正方形边长之和恰为rn+n-(m,n)当用m=1时,命题显然成立.假设当,m≤k时,结论成立(k≥1).当m=k+1时,若n=k+1,则命题显然成立.若n<k+1,从矩形ABCD中切去正方形AA1D1D(如图),由归纳假设矩形A1BCD1有一种分法使得所得正方形边长之和恰为m—n+n—(m-n,n)=m-(m,n),于是原矩形ABCD有一种分法使得所得正方形边长之和为rn+n-(m,n)(2)关于m归纳可以证明(*)成立.当m=1时,由于n=1,显然f(m,n)=rn+n-(m,n)假设当m≤k时,对任意1≤n≤m有f(m,n)=rn+n-(m,n)若m=k+1,当n=k+1时显然f(m,n)=k+1=rn+n-(m,n).当1≤n≤k时,设矩形ABCD按要求分成了p个正方形,其边长分别为al,a2,…,ap不妨a1≥a2≥…≥ap显然a1=n或a1<n.AA1BCD1Dmn
本文标题:01全国高中数学联赛试题及详细解析
链接地址:https://www.777doc.com/doc-8623167 .html