您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 公司方案 > 赵鲁生 关于灰铸铁中的氮含量问题 for 百铸网
一.关于灰铸铁中的氮含量问题1.03年开始,在生产日本牧野机床铸件工厂工作时,日本人对冲天炉熔炼灰铁300铁水,要求不定期检测氮含量,当时检测的氮含量一般在100-120PPM。为什么日本人以前检测氮?当时都不清楚,很盲目。2.06年初,这个工厂新建工厂开始试生产,使用感应电炉熔炼,而老厂依然使用冲天炉熔炼。在新厂的整个试生产期间,电炉使用的生铁,废钢等原材料与老厂完全一样,成分控制也基本相同,但是灰铁300力学性能却低于老厂冲天炉的性能。3.追查原因,大家从孕育,增加硫含量,等措施之后,依然没有改善,最后只好降低碳含量,来提高电炉灰铁300的力学性能。见光谱仪分析结果:(见照片,新潮铸造冲天炉和电炉成分)。即冲天炉碳从3.2-3.2%改成电炉2.9-3.0%。其余成分不变。4.我把这个工厂一个月期间,新,老厂光谱仪化验结果做了对比,发现冲天炉钛含量一般低于0.025%,而电炉钛含量在0.04-0.06%。钛含量不同是表面现象,实质问题是钛高,结合了强化灰铁基体的氮,影响了力学性能。之后一直就把灰铁钛作为控制的主要元素来对待,去分析一些质量问题。5.普什铸造的工作经历。6.08-09年,和美国GE公司讨论生产灰铁汽缸体铸件,美国人也要求铁水检测氮和其他微量元素,如钛,铅等等。其中钛要求小于等于0.025%,氮含量要求60-120PPM。这些要求和自己熔炼灰铁的经验,即从冲天炉转变成电炉熔炼后,遇到的问题相符。(见GE技术文件)7.灰铁熔炼从冲天炉转向电炉之后,非合成铸铁配料,同样原材料,碳当量一样,电炉铁水强度性能总是不如冲天炉高,细查原因,在冶金原理上有不同,却没有任何资料可以学习和介绍,但是从成分上看,可以查出微量元素含量不同,特别是钛含量不同。冲天炉铁水钛含量与美国人要求一样,有时还更低,一般小于0.025%,而电炉铁水钛含量一般都在0.04-0.05%以上。之后学习,知道钛强烈结合氮,而氮可以强化基体,是影响灰铁强度的因素之一,而冶金质量不同,还没有可靠的解释。8.现在,国内专家在铸造技术会议上多次谈到,在灰铁中,要把氮作为合金元素来对待,使大家逐步认识到影响氮的合金元素,钛,甚至锆,都要注意控制。在铸铁中,随着氮含量增加,铸铁强度增加,直至含量超过150PPM以上出现气孔为止,铸铁强度提高很多。郝石坚在“现代铸铁学”一书中介绍,铸铁成分在:W(C)3.12%,W(Si)1.35%,W(Mn)0.71%,W(S)0.09%,W(P)0.13%的铁水中随氮含量的增加,铸铁强度也逐步增加。见下表:(摘自郝石坚“现代铸铁”P307.翟启杰老师也有文章专门论述灰铁中的氮。)9.氮对灰铸铁抗拉强度的影响含量氮含量抗拉强度MPaPPM10.008%2878020.010%30510030.014%32814040.015%361150该试验以加入氰化钠改变铁水氮含量,以0.3%硅钙孕育。10.大量合成铸铁配料在电炉熔炼灰铁中使用,以增碳剂配料加入,增加铁水碳含量,而带来铁水氮含量大大增加,特别是不好的增碳剂,氮含量极高,同时废钢加入很多,铁水氮含量综合累积,(加上孕育,树脂砂型芯)使铸件出现氮气孔问题,也在影响铸件质量。很多文章介绍他们在解决氮气孔缺陷时,加入钛或者锆的合金,成功克服了灰铁铸件的氮气孔,但是从氮增加铸件强度方面来看,加上目前大量铸造企业准确分析铁水氮含量困难,最终控制铁水氮在合理的含量不足,也存在问题。下表是最近看见章舟老师的一本书中介绍增碳剂的成分。里面谈到含有氢,氧有新意。11.氮含量过高,引起铸件产生气孔。氮进一步增加,出现裂隙状氮气孔。当然实际铸造,熔炼过程难免有其他气体溶入铁水,一旦有氢溶入,则产生气孔缺陷的氮最高含量要降低。一般要求氮含量不要超过120PPM。氮含量越高,灰铁强度越高,直至最后因气孔出现,强度突然降低。虽然氢含量同时作用,产生气孔缺陷,但其在铁水中的最高允许含量比氮含量低一个数量级,灰铁中主要引起气孔缺陷的,还是氮。12.国外铸件采购客户,在十多年前就要求检测灰铁中的氮含量,现在这些客户把灰铁铁水中氮含量检测要求,更加频繁。牧野机床铸件采购日本人,现在要求这个铸造工厂每月检测一次铁水氮含量。目前,大量灰铁铁水是以感应电炉熔炼,配料则多以合成铸铁,多加废钢和高温煅烧石油焦增碳剂,少用生铁配料。这种熔炼工艺情况下,一般氮含量在80-90PPM左右。13.今年6月份,在河南新乡一个铸造工厂,看见他们把检测灰铁氮含量,也作为常规检测。但是他们的氮含量经常在40-60PPM,感觉偏低。可是他们的灰铁力学性能也没有遇到很大问题。我曾经以60%废钢,30%回炉料,10%生铁配料合成铸铁,灰铁300.以前一直很稳定,钛含量一般小于0.025%左右.但是在一个常年使用硅-锆孕育剂的工厂,则连续2-3炉铁水力学性能不合格。(碳3.0,硅孕育前1.4,钛0.02)。而取消硅锆孕育剂,以硅-钡-钙孕育剂代替后,力学性能一下从270跳到350MPa。当时不知道原因,几天之后,在青岛一个铸造会议上,遇见张文和老师,他解释说:锆的固氮作用比钛还要强,这才明白过来。这方面的认识,目前看还很粗浅,很多熔炼实际情况,影响因素很多,还有不同结果,需要继续学习认识。(见照片新乡氮含量)14.氮含量对灰铁力学性能有影响,但是很多实际情况难以解释。a.氧氮仪分析结果是全氮含量,而对力学性能有影响的是溶解氮,化合氮影响小(王云昭老师要求查清氮分析,与力可技术人员交流是全氮含量,烟台52分所把试样送宁波兵器部52所总部,使用美国力可氧氮仪分析,热导法,全氮含量)。b.大多数工厂化验氮含量手段不具备,偶有铸钢工厂光谱仪有氮通道,可以分析氮,准确度有问题。c.硅,钛,锆等等与氮化合的微量元素,对灰铁性能影响的机制,原理不清楚。生产实际中数据积累和试验研究不足。d.个人经历,钛高于0.05%肯定明显影响灰铁力学性能。锆也严重影响。(举例海阳北方机械工厂试验合成铸铁。碳3.0%硅1.4%,孕育后1.7%,钛小于0.02%)(南方知名铸造工厂,废钢90%,回炉料10%试验合成铸铁,有详细报告给我,钛含量非常低,力学性能勉强合格,估计使用了含锆的随流孕育剂)。15.最近看了庞凤荣老师组织翻译,王云昭老师审校的日本人写的“反应论铸铁学”,书中看到专门有一章节谈铸铁中氮的行为。日本人,美国人都在十几年前就注重铸铁中氮引起性能变化和影响,我们国内现在已经开始注意了。王云昭老师在今年五月“铸造工业”技术会议上提出,要把氮作为铸铁中的合金元素来对待。根据王云昭老师的要求,我在会议之后,去烟台这个铸造工厂,追查铸铁氮含量的分析情况,结果是分析的氮是全氮含量。铸铁里面的氮含量包括溶解氮和化合氮,影响力学性能的是溶解氮,化合氮包括与硅,钛,锆等等的化合物。区别溶解氮和化合氮估计比较困难。补充内容:1.灰铁熔炼从冲天炉转变为感应电炉,简单认识是感应电炉熔炼时间比较长,石墨结晶核心在高温下越来越少,容易形成白口,总的解释是冶金质量不如冲天炉好。但是,具体,详细的理论解释很少,而在两种熔炼设备的微量元素含量不同方面,有不少理论说法。2.感应电炉熔炼,对生铁等原材料中的各种元素烧损比冲天炉少很多,即保留了原材料,特别是生铁中的各种微量元素,其中危害元素是钛,铅,碲,等。而冲天炉熔炼,各种元素烧损较大,其中危害元素烧损也较多,为了减少生铁中有害元素对铁水的影响,铸造界现在多以合成铸铁工艺和高纯生铁材料来熔炼铁水。3.那么感应电炉熔炼铁水,如何使其冶金特性接近冲天炉铁水?近几年铸造工作者提出以下一些在使用的方法:a.感应电炉的功率密度配置比较大,保证熔炼时间缩短,即要快速熔炼。(沧州工厂10吨熔炼要3-4小时)。b.严禁铁水在平衡温度以上的高温保温时间过长,减少高温下石墨结晶核心的减少。(二氧化硅微晶问题)。c.生产中如果需要把铁水分几次出炉,铁水在炉内保存时间过长,则以增加铁水石墨核心的各种处理措施来对铁水做“预处理”。一般来讲,大件铸造车间,一炉铁水温度成分合格之后,都是马上出炉,或一包出完,或分2-3包出完,马上浇注铸件。而流水线铸造车间,如果炉子配置较大,要分几次出完铁水。(20吨铁水浇注一天。10吨炉子分4次出完,等待1小时多,南方工厂例子,可以看彩色金相照片)。d.预处理的操作有各种方法:留部分生铁,回炉料(除锈,除砂)或者0.05%-0.1%(高了影响石墨粗大)的高质量增碳剂,都在熔炼后期加入,目的是增加结晶核心。e.铁水温度成分合格,准备出炉前,加入含锆,含钡的预处理剂,或者加入少量细颗粒的冶金碳化硅做预处理剂,再出炉,目的也是增加石墨核心。f.灰铁汽缸体,缸盖铸造流水线车间,则是每次从大电炉出铁水之后,马上在炉内加入同牌号的回炉料,降低炉内温度到平衡温度以下,等下一包铁水准备出炉孕育时,再升温至规定温度出炉。这些同牌号回炉料不仅降低了炉内保温温度,同时也有对铁水的预处理作用。万仁芳老师介绍,二汽铸造工厂,都是这么操作。否则铸件要出问题。g.介绍++工厂流水线浇注灰铁250汽缸体情况。金相照片。
本文标题:赵鲁生 关于灰铸铁中的氮含量问题 for 百铸网
链接地址:https://www.777doc.com/doc-8642084 .html