您好,欢迎访问三七文档
当前位置:首页 > 资格认证/考试 > 自考 > 高等教育自学考试复习专题:线性代数(经管类)讲义-第一部分行列式
第一部分行列式本章概述行列式在线性代数的考试中占很大的比例。从考试大纲来看。虽然只占13%左右。但在其他章。的试题中都有必须用到行列式计算的内容。故这部分试题在试卷中所占比例远大于13%。大纲中规定的比例07.4全国统考试题07.7全国统考试题07.10全国统考试题直接考行列式这一章的13%左右11%11%15%再加上其余各章中必须应用行列式计算的34%29%21%1.1行列式的定义1.1.1二阶行列式与三阶行列式的定义一、二元一次方程组和二阶行列式例1.求二元一次方程组的解。【答疑编号12010101】解:应用消元法得当时。得同理得定义称为二阶行列式。称为二阶行列式的值。记为。于是由此可知。若。则二元一次方程组的解可表示为:例2【答疑编号12010102】二阶行列式的结果是一个数。我们称它为该二阶行列式的值。二、三元一次方程组和三阶行列式考虑三元一次方程组希望适当选择。使得当后将消去。得一元一次方程若,能解出其中要满足为解出。在(6),(7)的两边都除以得这是以为未知数的二元一次方程组。定义1.1.1在三阶行列式中,称于是原方程组的解为;类似地得这就将二元一次方程组解的公式推广到了三元一次方程组。例3计算【答疑编号12010103】例4(1)【答疑编号12010104】(2)【答疑编号12010105】例5当x取何值时,?【答疑编号12010106】为将此结果推广到n元一次方程组。需先将二阶、三阶行列式推广到n阶行列式。1.1.2阶行列式的定义定义1.1.2当n时,一阶行列式就是一个数。当时,称为n阶行列式。定义(其所在的位置可记为的余子式的代数余子式。定义为该n阶行列式的值。即。容易看出,第j列元素的余子式和代数余子式都与第j列元素无关;类似地,第i行元素的余子式和代数余子式都与第i行元素无关。n阶行列式为一个数。例6求出行列式第三列各元素的代数余子式。【答疑编号12010107】例7(上三角行列式)【答疑编号12010108】1.2行列式按行(列)展开定理1.2.1(行列式按行(列)展开定理)例1下三角行列式=主对角线元素的乘积。【答疑编号12010201】例2计算行列式【答疑编号12010202】例3求n阶行列式【答疑编号12010203】小结1.行列式中元素的余子式和代数余子式的定义。2.二阶行列式的定义。3.阶行列式的定义。即。4.行列式按行(列)展开的定理和应用这个定理将行列式降阶的方法。作业p8习题1.11(1)(2)(3)(5)(6),3作业p11习题1.21,2,3(1),(2),41.3行列式的性质及计算1.3.1行列式的性质给定行列式将它的行列互换所得的新行列式称为D的转置行列式,记为或。性质1转置的行列式与原行列式相等。即性质2用数k乘行列式D的某一行(列)的每个元素所得的新行列式等于kD。推论1若行列式中某一行(列)的元素有公因数,则可将公因数提到行列式之外。推论2若行列式中某一行(列)的元素全为零,则行列式的值为0。性质3行列式的两行(列)互换,行列式的值改变符号。以二阶为例设推论3若行列式某两行(列),完全相同,则行列式的值为零。证设中,第i行与第j行元素完全相同,则所以,D=0。性质4若行列式某两行(列)的对应元素成比例,则行列式的值为零。性质5若行列式中某一行(列)元素可分解为两个元素的和,则行列式可分解为两个行列式的和,即只要看注意性质中是指某一行(列)而不是每一行。可见性质6把行列式的某一行(列)的每个元素都乘以加到另一行(列),所得的行列式的值不变。证.1.3.2行列式的计算人们认识事物的基本方法是化未知为已知。对行列式,先看何为已知,(1)二,三阶行列式的计算;(2)三角形行列式的计算。因此,我们计算行列式的基本方法是利用行列式的性质把行列式化为三角形,或降阶。例1计算【答疑编号12010204】在行列式计算中如何造零是个重要技巧,主要是应用性质6。例2计算【答疑编号12010205】例3计算【答疑编号12010206】例4计算【答疑编号12010207】例5计算【答疑编号12010208】扩展计算【答疑编号12010209】例6计算【答疑编号12010301】方法1方法2扩展:计算【答疑编号12010302】例7计算【答疑编号12010303】例8计算【答疑编号12010304】扩展:计算【答疑编号12010305】例9计算n阶行列式【答疑编号12010306】解按第一列展开,得例10范德蒙行列式……【答疑编号12010307】.【答疑编号12010308】例11计算【答疑编号12010309】例12证明【答疑编号12010310】小结1.准确叙述行列式的性质;2.应用行列式的性质计算行列式的方法(1)低阶的数字行列式和简单的文字行列式;(2)各行元素之和为相同的值的情况(3)有一行(列)只有一个或两个非零元的情况作业p22习题1.31(1)(3),2,5,6(1)(3)(4)(5)(10)(11)(12)1.4克拉默法则这一节将把二元一次方程组解的公式推广到n个未知数,n个方程的线性方程组。为此先介绍下面的定理。定理1.4.1对于n阶行列式证由定理1.2.1知,注意改变第二列的元素,并不改变第二列元素的代数余子式类似地,可证明该定理的剩余部分。定理1.4.2如果n个未知数,n个方程的线性方程组的系数行列式则方程组有惟一的解:其中证明从略例1.求解【答疑编号12010401】把克拉默法则应用到下面的齐次方程组有定理1.4.3如果n个未知数n个方程的齐次方程组的系数行列式D≠0,则该方程组只有零解,没有非零解。推论如果齐次方程组有非零解,则必有系数行列式D=0。事实上,以后我们将证明对于由n个未知数n个方程的齐次方程组,系数行列式D=0,不仅是该齐次方程组有非零解的必要条件,也是充分条件,即若系数行列式D=0,则齐次方程组必有非零解。例2判断线性方程组是否只有零解【答疑编号12010402】例3当k为何值时,齐次方程组没有非零解?【答疑编号12010403】例4问当取何值时,齐次方程组有非零解?【答疑编号12010404】1.定理1.4.1对于,有2.n个未知数,n个方程的线性方程组的克拉默法则。以及n个未知数,n个方程的齐次线性方程组有非零解的充分必要条件。作业p28习题1.41(1)(2)(3)3第一章小结基本概念1.行列式中元素的余子式和代数余子式。2.行列式的定义基本公式1.行列式按一行(一列)展开的定理;2.行列式的性质;3.行列式中任一行(列)与另一行(列)的代数余子式乘积的和=0;4.克拉默法则5.n个未知数,n个方程的齐次方程组有非零解的充分必要条件是它的系数行列式=0。重点练习内容1.行列式中元素的余子式和代数余子式的计算;2.行列式的计算及重点例题(1)二、三阶行列式的计算;方法:利用行列式的性质降阶。(2)各行元素之和为常数的情况(重点例题:1.3节中例5及其扩展);(3)特殊的高阶行列式。
本文标题:高等教育自学考试复习专题:线性代数(经管类)讲义-第一部分行列式
链接地址:https://www.777doc.com/doc-8653009 .html