您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 电子设计/PCB > 解析法在几何中的应用
大庆师范学院物电学院课程论文解析法在几何中的应用姓名:周瑞勇学号:201001071465专业:物理学指导教师:何巍巍大庆师范学院物电学院课程论文解析法在几何的应用周瑞勇大庆师范学院物理与电气信息工程学院摘要:通过分析几何问题中的各要素之间的关系,用最简练的语言或形式化的符号来表达他们的关系,得出解决问题所需的表达式,然后设计程序求解问题的方法称为解析法。关键词:几何问题,表达关系,表达式,求解问题一前言几何学的历史深远悠久,欧几里得总结前人的成果,所著的《几何原本》。一直是几何学的坚固基石,至今我国中学教学的几何课本仍未脱离他的衣钵。长期的教学实践证明,采用欧式体系学习几何是培养学生逻辑思维能力的行之有效的方法。但是,事物都有两重性。实践同样证明,过多强调它的作为也是不适当的。初等几何的构思之难,使人们为此不知耗费了多少精力,往往为寻求一条神奇、奥秘的辅助线而冥思苦索。开辟新的途径,已是势在必行。近些年来,用解析法、向量法、复数法、三角法证明几何问题,受到越来越多的数学工作者的重视。由于平面几何的内容,只研究直线和园的问题,所以我们完全可以用解析法来研究几何问题。解析法不仅具有几何的直观性,而且也还有证明方法的一般性。综合几何叙述较简,但构思困难,而解析法思路清晰,过程简捷,可以作为证明几何问题中一种辅助方法,两者课去唱补短,想得益彰。二解析法概述几何数学主要是从几何图形这个侧面去研究客观事物的,其基本元素是点,代数学则主要是从数量关系这个侧面来研究客观事物,其基本元素是数。笛卡尔综合了前人的成果,创立了坐标概念,把代数学和几何学结合起来,于是产生了以研究点的位置和一对有序实数的关系、方程和曲线以及有研究连续运动而产生大庆师范学院物电学院课程论文的一般的变量概念为主要内容的新的数学分支——解析几何学。平面几何是研究平面图形性质的科学。组成平面图形的元素是点、线(包括曲线)。平面解析几何采用了坐标系,用代数方法来研究平面几何图形。所以。平面几何和平面解析几何是紧密联系的。我们通过坐标系,把几何问题转化为用代数的方法来论证。这种方法称为解析法。三用解析法的几何证明证线段的相等:用解析法证线段相等,首先求出有观点的坐标,运用两点间距离公式。此外还可以利用点到直线的距离公式,直线内分线段比公式(证其比值为1),以及利用中心对称或轴对称的点的坐标来证明。证角的相等:利用直线斜率的定义,分别求出夹这两个角的边的斜率,利用两条直线夹角公式得到这两个角的正切值相等,在判定这个角是在某一个单调区间内则它们相等。证两直线平行或垂直:先求出有关点的坐标,证这两条直线的斜率相等;若斜率不存在时,证这两直线于y抽平行;若有一条直线重合于坐标轴,证另一条直线有两点纵坐标或横坐标相等。证不等问题:用两点间距离公式,两条直线夹角公式把它转化为证明不等式问题,从而运用不等式的性质来证明。证点共线或线共点:建立经过任意两点的直线方程,然后验证其余点都适合这个方程;或运用两点之间距离公式或直线内外分段成比例公式证其满足梅氏定理的逆定理。证点共圆或园共点:求出有关各点,利用两点间距离公式证诸点到某一点的距离相等;或先建立经过三点的园的方程,然后证其余点适合圆的方程。证比例式或等积式:运用两点间距离公式求出线段的长度,再证它们的比相等或求出它们的乘积加以比较。证定值问题:先写出固定点的坐标系建立有关的固定直线(或圆)的方程,并运用两点距离公式和两直线夹角公式,求出欲证的线段(定长)或直线(定向、定位)与固定图形的元素加以比较,从而说明是定值。四解析法的几何计算大庆师范学院物电学院课程论文长度计算:适当建立坐标系求出有关点的坐标以后,常运用两点间公式、点到直线的距离、切线长公式;在求两线段的比时常运用直线内外分线段比公式。角度的计算:求出用有关点的坐标,利用斜率定义、两条直线夹角公式得到欲求角度的正切值,再利用正切函数在某一区间的单调性求出角的度数。面积的计算:运用有三点坐标做确定的上三角形的面积公式及四点坐标所确定的四边形面积公式。五结论我们可以运用解析法,同时要善于使用平面直角坐标系、极坐标系、斜坐标系、空间直角坐标系中的有关公式和方程来解决解决问题。参考文献:[1]陈德华.例谈解析法诱导综合法解初等几何题.蒙自师范高等专科学校学报.编辑部邮箱2002年04期.[2]孟利忠.强化解析法在立体几何中的应用数学通讯,2001,(13).[3]刘翠英.关于高等几何对初等几何教学指导的几个问题[J].高等函授学报(自然科学版),2006,(04)
本文标题:解析法在几何中的应用
链接地址:https://www.777doc.com/doc-8682272 .html