您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 6《平方差公式》导学案
14.2乘法公式14.2.1平方差公式1.知道平方差公式,能用几何拼图的方式验证平方差公式,能灵活应用平方差公式进行计算.3.重点:平方差公式的探究及应用.问题探究平方差公式阅读教材“思考”前所有内容,解决下面的问题.1.计算:(1)(x+2)(x-2)=;(2)(y+3)(y-3)=;(3)(3y+1)(3y-1)=.2.观察上面三个等式,说说左边和右边的两个多项式各有什么特点?3.用字母表示上述几个式子反映的规律为.【归纳总结】两个数的与这两个数的的积,等于这两个数的平方差.【讨论】根据教材“思考”中的问题验证平方差公式.1.图中②和③的面积相等吗?为什么?2.你能用a、b表示图中①和②的面积之和吗?3.由1、2中的问题,你能直接说出图中①和③的面积之和吗?4.图中①和③的面积之和还可以等于哪两个图形的面积之差?你能写出这个差吗?5.由3、4你可以得到什么结论?【预习自测】(1)(x+5)(x-5)=;(2)(a+b)(b-a)=;22(3)(-3+a)(-3-a)=()-()=;互动探究1:下列多项式相乘时,可以用平方差公式的是()A.(a+b)(-a-b)B.(-a-b)(a-b)C.(a-b)(-a+b)D.(a-2)(a+3)互动探究2:下列计算中,结果正确的是()22A.(x-3)(3+x)=x-3B.(3x-2)(2+x)=3x-422222C.(7ab-c)(7ab+c)=49ab-cD.(-x-y)(x+y)=x-y【方法归纳交流】平方差公式的特征:①公式的左边是两个二项式相乘,并且这两个二项式中有一项,另项;②右边是因式中的两项的平方差(减去).互动探究3:运用平方差公式计算:(1)(7c-2b)(7c+2b)(2)(-x-1)(1-x);(3)(x+3)(x-3)-(x-1)(x+2).2互动探究4:计算:(x-3)(x+9)(x+3).富不贵只能是土豪,你可以一夜暴富,但是贵气却需要三代以上的培养。孔子说“富而不骄,莫若富而好礼。”如今我们不缺土豪,但是我们缺少贵族。高贵是大庇天下寒士俱欢颜的豪气与悲悯之怀,高贵是位卑未敢忘忧国的壮志与担当之志高贵是先天下之忧而忧的责任之心。精神的财富和高贵的内心最能养成性格的高贵,以贵为美,在不知不觉中营造出和气的氛围;以贵为高,在潜移默化中提升我们的素质。以贵为尊,在创造了大量物质财富的同时,精神也提升一个境界。一个心灵高贵的人举手投足间都会透露出优雅的品质,一个道德高贵的社会大街小巷都会留露出和谐的温馨,一个气节高贵的民族一定是让人尊崇膜拜的民族。别让富而不贵成为永久的痛。分享一段网上流传着改变内心的风水的方法,让我们的内心高贵起来:喜欢付出,福报就越来越多;喜欢感恩,顺利就越来越多;喜欢助人,贵人就越来越多;喜欢知足,快乐就越来越多;喜欢逃避,失败就越来越多;喜欢分享,朋友就越来越多。喜欢生气,疾病就越来越多;喜欢施财,富贵就越来越多;喜欢享福,痛苦就越来越多;喜欢学习,智慧就越来越多。
本文标题:6《平方差公式》导学案
链接地址:https://www.777doc.com/doc-8744961 .html