您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 高中立体几何经典题型练习题(含答案)
高中数学立体几何练习题精选试卷姓名班级学号得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分100分。考试时间90分钟。2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)评卷人得分一.单选题(每题2分,共40分)1.设直线l,m和平面α,β,下列条件能得到α∥β的有()①l⊂α,m⊂α,且l∥β,m∥β;②l⊂α,m⊂α且l∥m;③l∥α,m∥β且l∥m.A.1个2.一个四面体中如果有三条棱两两垂直,且垂足不是同一点,这三条棱就象中国武术中的兵器--三节棍,所以,我们常把这类四面体称为“三节棍体”,三节棍体ABCD四个顶点在空间直角坐标系中的坐标分别为A(0,0,0)、B(0,4,0)、C(4,4,0)、D(0,0,2),则此三节棍体外接球的表面积是()A.36πB.2个C.3个D.0个B.24πC.18πD.12π3.一个圆锥的侧面展开图的圆心角为90°,它的表面积为a,则它的底面积为()A.4、如图,三棱柱ABC-A1B1C1的侧棱长和底面边长均为4,且侧棱AA1⊥底面ABC,其主视图是边长为4的正方形,则此三棱柱的侧视图的面积为()B.C.D.A.16B.2C.4D.5.三棱锥P-ABC的侧棱PA,PB,PC两两互相垂直,且PA=PB=PC=2,则三棱锥P-ABC的外接球的体积是()A.26.在正方体ABCD-A′B′C′D′中,过对角线BD‘的一个平面交AA′于点E,交CC′于点F.则下列结论正确的是()①四边形BFD′E一定是平行四边形②四边形BFD′E有可能是正方形③四边形BFD′E在底面ABCD的投影一定是正方形④四边形BFD′E有可能垂于于平面BB′D.A.①②③④7.如图,在四面体A-BCD中,AB⊥平面BCD,BC⊥CD,若AB=BC=CD=1,则AD=()B.①③④C.①②④D.②③④πB.4πC.πD.8πA.1B.C.D.28.已知a,b是空间两条异面直线,它们所成的角为80°,过空间一点P作直线l,使l与a,b所成角均为50°,这样的l有()A.1条9.满足下面哪一个条件时,可以判定两个不重合的平面α与β平行()A.α内有无数个点到平面β的距离相等B.α内的△ABC与β内的△ABC全等,且AA∥BB∥CCC.α,β都与异面直线a,b平行D.直线l分别与α,β两平面平行10.已知两个不同的平面α,β和两条不重合的直线m,n,有下列四个命题:①若m∥n,n⊂α,则m∥α;②若m∥α,n∥α,且m⊂β,n⊂β,则α∥β;③若m∥α,n⊂α,则m∥n;④若α∥β,m⊂α,则m∥β.其中正确命题的个数是()A.1个11.在直二面角α-AB-β的棱AB上取一点P,过P分别在α、β两个平面内作与棱成45°的斜线PC、PD,那么∠CPD的大小为()A.45°B.60°C.120°D.60°或120°B.2个C.3个D.4个B.2条C.3条D.4条12、如图,将边长为1的正方形ABCD,沿对角线BD折起来,使平面ABD⊥平面C′BD,则AC′=()C/ADBA.1CB.C.D.13.一个正四棱锥的底面面积为Q,则它的中截面(过各侧棱的中点的截面)的边长是()A.14.某几何体的三视图如图实数,则当x+y取最大值时,该几何体的体积为()B.C.D.6x1正视图侧视图1y俯视图A.15.b,c中,b和c是一对异面直线,空间三条直线a,取三条直线中某两条直线确定平面,那么可以确定平面个数是()B.C.D.A.0或1B.1或2C.0或2D.0或1或216.n⊥β,n所成的角为已知二面角α-l-β的大小为60°,且m⊥α,则异面直线m,()A.30°17.设α、β表示平面,l表示不在α内也不在β内的直线,给出下列命题:①若l⊥α,l∥β,则α⊥β;②若l∥β,α⊥β,则l⊥α;③若l⊥α,α⊥β,则l∥β.其中正确的命题是()A.①③18.三棱锥P-ABC中,PA=PB=PC=AC=1,△ABC是等腰直角三角形,∠ABC=90°.若E为PC中点,则BE与平面PAC所成的角的大小等于()A.30°19.在正方体A1C中,对角线A1C与平面B1BCC1所成的角是()A.∠A1CB120.若m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列命题中真命题是()A.若m⊥β,m∥α,则α⊥βB.若α∩γ=m,β∩γ=n,m∥n,则α∥βC.若mβ,α⊥β,则m⊥αD.若α⊥γ,α⊥β,则β⊥γB.∠A1CC1C.∠A1CBD.∠A1B1CB.45°C.60°D.90°B.①②C.②③D.①②③B.120°C.90°D.60°评卷人得分二.填空题(每题3分,共15分)21.将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D-ABC的体积是______.22.如图,图①、②、③是图④表示的几何体的三视图,其中图①是______,图②是______,图③是______(说出视图名称).23.BD的长分别为4,6,若空间四边形ABCD的两条对角线AC,过AB的中点E且平行BD,AC的截面四边形的周长为______.24、如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD与△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①;②∠BAC=60°;③三棱锥D-ABC是正三棱锥;④平面ADC的法向量和平面ABC的法向量互相垂直.其中正确结论的序号是______.(请把正确结论的序号都填上)25.直角三角形ABC中,CA=CB=,M为AB的中点,将△ABC沿CM折叠,使A、B之间的距离为1,则三棱锥M-ABC外接球的体积为______.评卷人得分三.简答题(每题9分,共45分)如图,多面体ABCDEFG中,AB,AC,AD两两垂直,平面ABC∥平面DEFG,平面BEF∥平面ADGC,AB=AD=DG=2,AC=EF=1.(1)证明四边形ABED是正方形;(2)判断点B,C,F,G是否四点共面,并说明为什么?(3)连接CF,BG,BD,求证:CF⊥平面BDG.27、如图,直四棱柱ABCD-A1B1C1D1中,底面ABCD为梯形,AB平行于CD,,AD1⊥A1C,E是A1B1中点.(1)求证:CD⊥A1D1.(2)求二面角C-D1E-B1的大小.28、如图,直三棱柱ABC-A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1.(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1-AC1-B1的大小.29.按下列叙述画出图形(不必写作法):直线a,b相交于点M,点N不在直线a,b上,点N分别与直线a,b确定平面α,β.30、PA⊥平面ABCD,ABCD是直角梯形,AD∥BC,如图,已知四棱锥P-ABCD中,∠BAD=90°,BC=2AD.(1)求证:AB⊥PD;(2)在线段PB上是否存在一点E,使AE∥平面PCD,若存在,指出点E的位置并加以证明;若不存在,请说明理由.参考答案评卷人得分一.单选题(共__小题)1.设直线l,m和平面α,β,下列条件能得到α∥β的有()①l⊂α,m⊂α,且l∥β,m∥β;②l⊂α,m⊂α且l∥m;③l∥α,m∥β且l∥m.A.1个答案:D解析:解:对于①,∵l⊂α,m⊂α,且l∥β,m∥β,当直线l与直线m相交时,α∥β,故①错误;对于②,l⊂α,m⊂α且l∥m,不能得到α∥β,故②错误;对于③,如图,l∥α,m∥β且l∥m,α∩β=n,故③错误;B.2个C.3个D.0个故选:D.2.一个四面体中如果有三条棱两两垂直,且垂足不是同一点,这三条棱就象中国武术中的兵器--三节棍,所以,我们常把这类四面体称为“三节棍体”,三节棍体ABCD四个顶点在空间直角坐标系中的坐标分别为A(0,0,0)、B(0,4,0)、C(4,4,0)、D(0,0,2),则此三节棍体外接球的表面积是()A.36π答案:A解析:4,4,解:由题意,可补成长方体,同一顶点的三条棱长分别为2,其对角线长为=6,B.24πC.18πD.12π∴三节棍体外接球的半径为3,∴三节棍体外接球的表面积是4π×32=36π,故选:A.3.一个圆锥的侧面展开图的圆心角为90°,它的表面积为a,则它的底面积为()A.答案:A解析:解:设圆锥的母线为l,所以圆锥的底面周长为:,B.C.D.底面半径为:=,底面面积为:.圆锥的侧面积为:,所以圆锥的表面积为:+=a,底面面积为:故选A.=.4、如图,三棱柱ABC-A1B1C1的侧棱长和底面边长均为4,且侧棱AA1⊥底面ABC,其主视图是边长为4的正方形,则此三棱柱的侧视图的面积为()A.16答案:D解析:B.2C.4D.解:根据题中的直观图和三视图,结合题意可得∵主视图是边长为4的正方形,∴三棱柱的侧棱与底面垂直,底面是边长为4的等边三角形,作出底面等边三角形的高,可得等边三角形的高为4sin60°=2∵侧视图是以侧棱长为一边、底面三角形的高为另一边的矩形∴侧视图的面积S=4×故选:D5.三棱锥P-ABC的侧棱PA,PB,PC两两互相垂直,且PA=PB=PC=2,则三棱锥P-ABC的外接球的体积是()A.2答案:B解析:πB.4πC.πD.8π=,解:以PA、PB、PC为过同一顶点的三条棱,作长方体如图则长方体的外接球同时也是三棱锥P-ABC外接球.∵长方体的对角线长为2∴球直径为2,半径R=,,)3=4π因此,三棱锥P-ABC外接球的体积是πR3=π×(故选:B.6.在正方体ABCD-A′B′C′D′中,过对角线BD‘的一个平面交AA′于点E,交CC′于点F.则下列结论正确的是()①四边形BFD′E一定是平行四边形②四边形BFD′E有可能是正方形③四边形BFD′E在底面ABCD的投影一定是正方形④四边形BFD′E有可能垂于于平面BB′D.A.①②③④答案:B解析:B.①③④C.①②④D.②③④解:①∵四边形BFD′E与面BCC′B′的交线为BF,与面ADD′A′的交线为D′E,且面BCC′B′∥面ADD′A′的交线为D′E,∴BF∥D′E,同理可证明出BE∥D′F,∴四边形BFD′E一定是平行四边形,故结论①正确.②当F与C′重合,E与A点重合时,BF显然与EB不相等,不能是正方形,当这不重合时,BF和BE不可能垂直,综合可知,四边形BFD′E不可能是正方形结论②错误.③∵四边形BFD′E在底面ABCD的投影是四边形A′B′C′D′,故一定是正方形,③结论正确.④当E,F分别是AA′,CC′的中点时,EF∥AC,AC⊥BD,∴EF⊥BD,BB′⊥面ABCD,AC⊂面ABCD,∴BB′⊥AC,∴BB′⊥EF,∵BB′⊂面BDD′B′,BD⊂面BDD′B′,BD∩BB′=B,∴EF⊥面BDD′B′,∵EF⊂四边形BFD′E,平面BB′D⊂面BDD′B′,∴面形BFD′E⊥面BDD′B′.故结论④正确.故选:B.7.如图,在四面体A-BCD中,AB⊥平面BCD,BC⊥CD,若AB=BC=CD=1,则AD=()A.1答案:C解析:B.C.D.2解:∵AB⊥平面BCD,CD面BCD,∴AB⊥CD,又CD⊥BC,∴CD⊥面ABC,∴CD⊥AC,又AB=BC=CD=1,∴AD2=AC2+CD2=AB2+BC2+CD2=3,∴AD=.故选C.8.已知a,b是空间两条异面直线,它们所成的角为80°,过空间一点P作直线l,使l与a,b所成角均为50°,这样的l有()A.1条答案:C解析:B.2条C.3条D.4条b∥b',解:在空间取一点P,经过点P分别作a∥a‘,设直线a'、b'确定平面α,当直线PM满足它的射影PQ在a'、b'所成角的平分线上时,PM与a'所成的角等于PM与b'所成的角因为直线a,b所成的角为80°,得a'、b'所成锐角等于80°所以当PM的射影PQ在a'、b'所成锐角的平分线上时,PM与a'、b'所成角的范围是[40°,90°).这种情况下,过点P有两条直线与a',b'所成的角都是50°b'所成钝角的平
本文标题:高中立体几何经典题型练习题(含答案)
链接地址:https://www.777doc.com/doc-8751263 .html