您好,欢迎访问三七文档
Grigni:[15]ApproximateTSPinGraphswithForbiddenMinorsMichelangeloGrigni?Dept.ofMathematicsandComputerScience,EmoryUniversity,AtlantaGeorgia30322,USA,mic@mathcs.emory.eduKeywords:graphminor,genus,separator,spanner,TSP,approximationscheme.Abstract.Givenasinputanedge-weightedgraph,weanalyzetwoal-gorithmsfor ndingsubgraphswithlowtotaledgeweight.The rstal-gorithm ndsaseparatorsubgraphwithasmallnumberofcomponents,andisanalyzedforgraphswithanarbitraryexcludedminor.Thesecondalgorithm ndsaspannerwithsmallstretchfactor,andisanalyzedforgraphsinahereditaryfamilyG(k).Theseresultsimply(i)aQPTAS(quasi-polynomialtimeapproximationscheme)fortheTSP(travelingsalespersonproblem)inunweightedgraphswithanexcludedminor,and(ii)aQPTASfortheTSPinweightedgraphswithboundedgenus.1IntroductionInthetravelingsalespersonproblem(TSP)wearegivennsitesandtheirdistancematrix,andourgoalisto ndasimpleclosedtourofthesiteswithminimumtotaldistance.TheTSPhasdrivenbothpracticalandtheoreticalalgorithmre-searchforseveraldecades[9].MostvariantsareNP-hard,andthereforemuchattentionisgiventoapproximatesolutionsformetricTSP,wherethedistancematrixisametric(nonnegative,symmetric,andsatisfyingthetriangleinequal-ity).AnalgorithmofChristo des[6] ndsametricTSPsolutionwithcostatmost3=2timesoptimal.Wewouldpreferapolynomialtimeapproximationscheme(PTAS);thatis,foreach0,wewouldlikeapolynomialtimealgo-rithmwhichproducesasolutionwithcostatmost1+timesoptimal.However,metricTSPisMAXSNP-hardevenwhenalldistancesareoneortwo[12],andsothereissomepositive0suchthat ndinga1+0approximationisNP-hard.Indeed,the3=2guaranteeofChristo deshasnotbeenimproved(althoughinpractice,otherheuristicsaremuchbetter).However,therehasbeenrecentprogressincertainrestrictedmetricspaces.In[8]wefoundaPTASfortheTSPonthenodesofanunweightedplanargraph,wherethemetricisgivenbyshortestpathlengthsinthegraph.Welatergeneralized[4]thistoallowdistancesde nedbynon-negativeedgecosts.Arora[3](alsoMitchell[11])gaveaPTASfortheTSPandrelatedproblems?SupportedbyNSFGrantnumberCCR-9820931.forpointsinaEuclideanspaceof xeddimension.Roughlyspeaking,alloftheseresultsdependontheabilityto ndinexpensiveand\well-connectedseparators.Inthispaperweextendthemethodsof[4]fromplanargraphstolargergraphfamilies.Thisleadsustoageneralnotionofwell-connectedseparatorthatmayhaveotheralgorithmicapplications.Wepresenttwosubgraph ndingalgorithms;inbothalgorithmsthegoalisalightsubgraph,meaningthatithaslowtotaledgeweight.InSection3wegiveanalgorithm ndingalightseparatorsubgraphwithfewconnectedcomponents,ingraphsfromanyfamilywithanontrivialexcludedminor.InSection4wegiveanalgorithm ndingalightspannerwithlowstretchfactor,ingraphsfromafamilyG(k),tobede ned.Thisfamilyincludesgraphsofboundedgenus.Finally,inSection5wesketchaQPTAS(quasi-polynomialtimeapproxi-mationscheme)formetricTSPintwosituations.First,fortheshortestpathmetricinanunweightedgraphfromafamilywithanexcludedminor.Second,fortheshortestpathmetricinanedge-weightedgraphfromfamilyG(k),forany xedk.BothschemesrunintimenO(loglogn).2PreliminariesAllgraphsinthispaperareundirectedandsimple.AgraphG=(V;E)isedge-weightedifithasanon-negativeweight(orlength)‘(e)oneachedgee2E;itisvertex-weightedifithasanon-negativeweightw(v)oneachvertexv2V.AsubgraphHofGinheritstheseweightsonitsedgesandvertices.ThetotaledgeweightandvertexweightinHaredenotedby‘(H)andw(H),respectively.ThenumberofconnectedcomponentsinHisdenoted#(H).WhenGisedge-weighted,dG(u;v)denotestheminimumlength‘(P)ofapathPconnectingendpointsuandv.Thisiszerowhenu=v,and+1whenuandvaredisconnected.G0=(V;E0)isaspanningsubgraphifitspanseachcomponentofG.ClearlydG(u;v) dG0(u;v);thestretchfactorsf(G0;G)istheminimumssuchthatdG0(u;v) s dG(u;v)forallu;v2V(itsu cestoconsideronlyedgepairsfu;vg2E).Whensf(G0;G) s,wesaythatG0isans-spannerinG.GivenagraphG,aminorofGisagraphresultingfromsomesequenceofedgedeletion,vertexdeletion,oredgecontractionoperations(denotedG e,G v,andG=erespectively).Sinceweonlyconsidersimplegraphs,wediscardself-loopsandparalleledges.WesayGhasanH-minor(denotedHG)ifGhasaminorisomorphictoH.AhereditarygraphpropertyisaclassPofgraphsclosedunderisomorphism,suchthatwheneverGisinP,soareitsminors.Inaseriesofpapers,RobertsonandSeymourshowthateveryhereditarygraphpropertyischaracterizedbya nitesetofforbiddenminors(see[7]foranoverview).TheprimeexampleisKuratowski’scharacterizationofplanargraphsbytheforbiddenminorsfK5;K3;3g.ForasubsetXofverticesinG,anX- apisthevertexsetofaconnectedcomponentofG X.Givenavertex-weightedgraphG,aseparatorisasubgraphSsuchthateveryV(S)- aphasweightatmostw(G)=2.Notethatseparatorsareusuallyde nedasjustavertexset,butinthispaperweareinterestedinatradeo between‘(S)and#(S).LetV(G) kdenotethecollectionofsetsofatmostkverticesinG.Ahavenoforderkisafunction assigninganX- aptoeachX2V(G) k,suchthat (Y) (X)wheneverX Y2V(G) k.Givenavertex-weightedgraphGandanon-separatorvertexsubsetX,let w(X)denotetheuniqueX- apwithweightexceedingw(G)=2.IfXisaseparator,let w(X)=;.NotethatifGhasnoseparatorofsizek,then w(restrictedtoV(G) k)isahavenoforderk.3AWell-ConnectedSeparatorA
本文标题:Grigni [15] Approximate TSP in Graphs with Forbidd
链接地址:https://www.777doc.com/doc-904 .html