您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 教学/培训 > 高考第一轮复习----动量
参考资料,少熬夜!高考第一轮复习----动量第四章势头第四章势头一.动量和冲量1.动量按定义,物体的质量和速度的乘积叫做动量:p=mv⑴动量是描述物体运动状态的一个状态量,它与时刻相对应。⑵动量是矢量,它的方向和速度的方向相同。2.冲量按定义,力和力的作用时间的乘积叫做冲量:I=Ft⑴冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。⑵冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。⑶高中阶段只要求会用I=Ft计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。⑷要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。mH例1.质量为m的小球由高为H的光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大?解:力的作用时间都是,力的大小依次是mg、mgcosα和mgsinα,所以它们的冲量依次是:特别要注意,该过程中弹力虽然不做功,但对物体有冲量。二、动量定理1.动量定理物体所受合外力的冲量等于物体的动量变化。既I=Δp⑴动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。⑵动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。⑶现代物理学把力定义为物体动量的变化率:(牛顿第二定律的动量形式)。⑷动量定理的表达式是矢量式。在一维的情况下,各个矢量必须以同一个规定的方向为正。例2.以初速度v0平抛出一个质量为m的物体,抛出后t秒内物体的动量变化是多少?参考资料,少熬夜!解:因为合外力就是重力,所以Δp=Ft=mgt有了动量定理,不论是求合力的冲量还是求物体动量的变化,都有了两种可供选择的等价的方法。本题用冲量求解,比先求末动量,再求初、末动量的矢量差要方便得多。当合外力为恒力时往往用Ft来求较为简单;当合外力为变力时,在高中阶段只能用Δp来求。2.利用动量定理定性地解释一些现象例3.鸡蛋从同一高度自由下落,第一次落在地板上,鸡蛋被打破;第二次落在泡沫塑料垫上,没有被打破。这是为什么?解:两次碰地(或碰塑料垫)瞬间鸡蛋的初速度相同,而末速度都是零也相同,所以两次碰撞过程鸡蛋的动量变化相同。根据Ft=Δp,第一次与地板作用时的接触时间短,作用力大,所以鸡蛋被打破;第二次与泡沫塑料垫作用的接触时间长,作用力小,所以鸡蛋没有被打破。(再说得准确一点应该指出:鸡蛋被打破是因为受到的压强大。鸡蛋和地板相互作用时的接触面积小而作用力大,所以压强大,鸡蛋被打破;鸡蛋和泡沫塑料垫相互作用时的接触面积大而作用力小,所以压强小,鸡蛋未被打破。)F例4.某同学要把压在木块下的纸抽出来。第一次他将纸迅速抽出,木块几乎不动;第二次他将纸较慢地抽出,木块反而被拉动了。这是为什么?解:物体动量的改变不是取决于合力的大小,而是取决于合力冲量的大小。在水平方向上,第一次木块受到的是滑动摩擦力,一般来说大于第二次受到的静摩擦力;但第一次力的作用时间极短,摩擦力的冲量小,因此木块没有明显的动量变化,几乎不动。第二次摩擦力虽然较小,但它的作用时间长,摩擦力的冲量反而大,因此木块会有明显的动量变化。3.利用动量定理进行定量计算利用动量定理解题,必须按照以下几个步骤进行:⑴明确研究对象和研究过程。研究对象可以是一个物体,也可以是几个物体组成的质点组。质点组内各物体可以是保持相对静止的,也可以是相对运动的。研究过程既可以是全过程,也可以是全过程中的某一阶段。⑵进行受力分析。只分析研究对象以外的物体施给研究对象的力。所有外力之和为合外力。研究对象内部的相互作用力(内力)会改变系统内某一物体的动量,但不影响系统的总动量,因此不必分析内力。如果在所选定的研究过程中的不同阶段中物体的受力情况不同,就要分别计算它们的冲量,然后求它们的矢量和。参考资料,少熬夜!⑶规定正方向。由于力、冲量、速度、动量都是矢量,在一维的情况下,列式前要先规定一个正方向,和这个方向一致的矢量为正,反之为负。⑷写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和)。⑸根据动量定理列式求解。ABC例5.质量为m的小球,从沙坑上方自由下落,经过时间t1到达沙坑表面,又经过时间t2停在沙坑里。求:⑴沙对小球的平均阻力F;⑵小球在沙坑里下落过程所受的总冲量I。解:设刚开始下落的位置为A,刚好接触沙的位置为B,在沙中到达的最低点为C。⑴在下落的全过程对小球用动量定理:重力作用时间为t1+t2,而阻力作用时间仅为t2,以竖直向下为正方向,有:mg(t1+t2)-Ft2=0,解得:⑵仍然在下落的全过程对小球用动量定理:在t1时间内只有重力的冲量,在t2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:mgt1-I=0,∴I=mgt1这种题本身并不难,也不复杂,但一定要认真审题。要根据题意所要求的冲量将各个外力灵活组合。若本题目给出小球自由下落的高度,可先把高度转换成时间后再用动量定理。当t1t2时,Fmg。mMv0v/例6.质量为M的汽车带着质量为m的拖车在平直公路上以加速度a匀加速前进,当速度为v0时拖车突然与汽车脱钩,到拖车停下瞬间司机才发现。若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大?解:以汽车和拖车系统为研究对象,全过程系统受的.合外力始终为,该过程经历时间为v0/μg,末状态拖车的动量为零。全过程对系统用动量定理可得:这种方法只能用在拖车停下之前。因为拖车停下后,系统受的合外力中少了拖车受到的摩擦力,因此合外力大小不再是。例7.质量为m=1kg的小球由高h1=处自由下落,落到水平地面后,反跳的最大高度为h2=,从小球下落到反跳到最高点经历的时间为Δt=,取g=10m/s2。求:小球撞击地面过程中,球对地面的平均压力的大小F。解:以小球为研究对象,从开始下落到反跳到最高点的参考资料,少熬夜!全过程动量变化为零,根据下降、上升高度可知其中下落、上升分别用时t1=和t2=,因此与地面作用的时间必为t3=。由动量定理得:mgΔt-Ft3=0,F=60N三、动量守恒定律1.动量守恒定律一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。即:2.动量守恒定律成立的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。3.动量守恒定律的表达形式除了,即p1+p2=p1/+p2/外,还有:Δp1+Δp2=0,Δp1=-Δp2和4.动量守恒定律的重要意义从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。但云室照片显示,两者径迹不在一条直线上。为解释这一反常现象,1930年泡利提出了中微子假说。由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中微子的存在。(2000年高考综合题23②就是根据这一历史事实设计的)。又如人们发现,两个运动着的带电粒子在电磁相互作用下动量似乎也是不守恒的。这时物理学家把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了。四、动量守恒定律的应用1.碰撞AABABABv1vv1/v2/ⅠⅡ参考资料,少熬夜!Ⅲ两个物体在极短时间内发生相互作用,这种情况称为碰撞。由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。仔细分析一下碰撞的全过程:设光滑水平面上,质量为m1的物体A以速度v1向质量为m2的静止物体B运动,B的左端连有轻弹簧。在Ⅰ位置A、B刚好接触,弹簧开始被压缩,A开始减速,B开始加速;到Ⅱ位置A、B速度刚好相等(设为v),弹簧被压缩到最短;再往后A、B开始远离,弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A、B分开,这时A、B的速度分别为。全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。⑴弹簧是完全弹性的。Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。这种碰撞叫做弹性碰撞。由动量守恒和能量守恒可以证明A、B的最终速度分别为:。(这个结论最好背下来,以后经常要用到。)⑵弹簧不是完全弹性的。Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。这种碰撞叫非弹性碰撞。v1⑶弹簧完全没有弹性。Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A、B不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。这种碰撞叫完全非弹性碰撞。可以证明,A、B最终的共同速度为。在完全非弹性碰撞过程中,系统的动能损失最大,为:。(这个结论最好背下来,以后经常要用到。)例8.质量为M的楔形物块上有圆弧轨道,静止在水平面上。质量为m的小球以速度v1向物块运动。不计一切摩擦,圆弧小于90°且足够长。求小球能上升到的最大高度H和物块的最终速度v。解:系统水平方向动量守恒,全过程机械能也守恒。在小球上升过程中,由水平方向系统动量守恒得:由系统机械能守恒得:解得全过程系统水平动量守恒,机械能守恒,得本题和上面分析的弹性碰撞基本相同,唯一的参考资料,少熬夜!不同点仅在于重力势能代替了弹性势能。例9.动量分别为5kgm/s和6kgm/s的小球A、B沿光滑平面上的同一条直线同向运动,A追上B并发生碰撞后。若已知碰撞后A的动量减小了2kgm/s,而方向不变,那么A、B质量之比的可能范围是什么?解:A能追上B,说明碰前vAvB,∴;碰后A的速度不大于B的速度,;又因为碰撞过程系统动能不会增加,,由以上不等式组解得:此类碰撞问题要考虑三个因素:①碰撞中系统动量守恒;②碰撞过程中系统动能不增加;③碰前、碰后两个物体的位置关系(不穿越)和速度大小应保证其顺序合理。2.子弹打木块类问题子弹打木块实际上是一种完全非弹性碰撞。作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。s2ds1v0v例10.设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。解:子弹和木块最后共同运动,相当于完全非弹性碰撞。从动量的角度看,子弹射入木块过程中系统动量守恒:从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f,设子弹、木块的位移大小分别为s1、s2,如图所示,显然有s1-s2=d对子弹用动能定理:……①对木块用动能定理:……②①、②相减得:……③这个式子的物理意义是:fd恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。由上式不难求得平均阻力的大小:至于木块前进的距离s2,可以由以上②、③相比得出:参考资料,少熬夜!从牛顿运动定律和运动学公式出发,也可以得出同样的结论。由于子弹和木块都在恒
本文标题:高考第一轮复习----动量
链接地址:https://www.777doc.com/doc-9128102 .html