您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业文化 > 环境监测数据处理(PPT33页)
组员:徐琦林潇陈超张文强环境监测数据处理环境监测数据处理和质量控制监测中所得到的许多物理、化学和生物学数据,是描述和评价环境质量的基本依据。由于监测系统的条件限制以及操作人员的技术水平,测试值与真值之间常存在差异;环境污染的流动性、变异性以及与时空因素关系,使某一区域的环境质量由许多因素综合所决定:描述某一河流的环境质量,必须对整条河流按规定布点.以一定频率测定,根据大量数据综合才能表述它的环境质量,所有这一切均需通过统计处理。分析误差3环境检测分析的任务是为了准确地测定各种环境中的化学成分或污染物质的含量,因此对分析结果的准确度有一定的要求。但是,由于受到分析方法、测量仪器、试剂药品、环境因素以及分析人员主观条件等方面的限制,使得测定结果与真实值不一致。因此,在分析测定的全过程中,必然存在分析误差。误差来源•误差是分析结果(测定值)与真实值之间的差值。根据误差的性质和来源,可将误差分为系统误差和偶然误差。4系统误差•是由分析过程中某些经常发生的确定因素造成的。在相同条件下重复测定时系统误差会重复出现,而且具有一定的方向性,即测定值比真实值总是偏高或偏低。因此,系统误差易于发现,其大小可以估计,可以加以校正。系统误差又称为可测误差。•产生系统误差的主要原因如下。5•1.方法误差是由于分析方法不够完善而造成的。如分析操作步骤繁琐、化学反应进行不完全、干扰物质影响、指示剂指示滴定中点与理论等当点不重合等。•2.仪器误差是由于仪器本身的缺陷或未经校准引起的。如天平未调节零点、砝码未校准、量器的刻度不够准确等。•3.试剂误差是由试剂(包括所用纯水)中含有杂质而引起。•4.恒定的个人误差是由于分析人员感觉器官的差异、反应的敏捷程度和个人固有的习惯造成的。•5.恒定的环境误差是由于测定时环境条件的显著变化引起的,如不同季节室温的改变等。6•系统误差可以通过采取不同的方法,如校准仪器,进行空白试验、对照试验、回收试验、制定标准规程等而得到适当的校正,使系统误差减小或消除。7偶然误差•偶然误差是由分析过程中一些偶然的因素造成的。这些偶然的因素如测定时温度的变化、电压的波动、仪器的噪声、分析人员的判断能力等,它们所引起的误差有时大、有时小、有时正、有时负,没有什么规律性,难以发现和控制。因此,偶然误差又称随机误差或不可测误差。8•偶然误差虽难以确定,但如果消除了系统误差之后,在相同条件下测定多次,发现偶然误差的统计规律性,其分布服从高斯正态分布,它具有以下特点:•1.单峰性,即绝对值小的误差出现的机会多,绝对值大的误差出现的机会少。•2.对称性,即大小相等的正负误差出现的机会相等。•3.抵偿性,即偶然误差的算术平均值趋近于零。99•当测定次数无限多时,偶然误差可以消除。但是,在实际的环境监测分析中,测定次数总是有限的,从而使偶然误差不可避免。要想减小偶然误差,需要适当增加测定次数。另外,有时由于分析人员的粗心大意或不按操作规定试验而引起明显错误,例如所用器皿不干净,错用药品,读数错误,记录错误及计算错误等,这些都是不应有的过失,所以也称这种过失引起的误差为过失误差。过失误差严格说来不属于一般误差的范围,一经发现,就应将这些测定结果剔除,并查明原因,及时改正。误差的表示方法绝对误差和相对误差•1.绝对误差指测定值与真值之差,即绝对误差=测定值-真值•2.相对误差是指绝对误差与真值之比,常用百分数表示,即•绝对误差和相对误差均能反映测定结果的准确程度,误差越小越准确。×100%绝对误差相对误差=真值11绝对偏差和相对偏差12•1.绝对偏差是指某一测定值(xi)与多次测量的平均值之差(x),即绝对偏差=测定值−平均值•2.相对偏差是指绝对偏差与平均值之比,常用百分数表示,即×100%绝对偏差相对偏差=平均值•3.极差极差是指对同一样品测定值中最大值与最小值之差,表示误差的范围,即极差=最大值−最小值•4.标准偏差和相对标准偏差标准偏差又称为均方根偏差,表达式如下∑(x−x)2n−1is=13•相对标准偏差也叫变异系数(CV),即标准偏差在平均值中所占的百分数。CV=s×100%14x准确度、精密度和灵敏度准确度•准确度是用一个特定的分析程序所获得的分析结果(单次测定值或重复测定值的均值)与假定的或公认的真值之间符合程度的度量。它是反映分析方法或测量系统存在的系统误差和偶然误差的综合指标,并决定其分析结果的可靠性。准确度用绝对误差和瓣对误差表示。15评价准确度的方法有两种:第一种是用某一方法分析标准物质,由其结果确定准确度;第二种是“加标回收法”,即在样品中加入标准物质,测定其回收率,以确定准确度,多移回收试验还可发现方法的系统误差,其计算式如下回收率=加标试样测定值−试样测定值加标值•通常加入的标准物质的量应与待测物质的浓度水平接近为宜。16精密度17•精密度是指用一特定的分析程序在受控条件下重复分析均一样品所得测定值的一致程度,它反映分析方法或测量系统所存在的偶然误差的大小。它的大小通常可用极差、标准偏差或相对标准偏差来表示。•在讨论精密度时,常用如下一些术语。•1.平行性指在同一实验室中,当分析人员、分析设备和分析时间都相同时,用同一分析方法对同一样品进行双份或多份平行样测定结果之间的符合程度。•2.重复性指在同一实验室内,当分析人员、分析设备和分析时间三个因素中至少确一项不相同时,用同一分析方法对同一样品进行的两次或两次以上独立测定,其结果之间剖符合程度。•3.再现性指在不同实验室(分析人员、分析设备甚至分析时间都不相同),用同一匀析方法对同一样品进行多次测定,其结果之间的符合程度。•通常室内精密度是指平行性和重复性的总和,而室间精密度(即再现性),通常用分析标准溶液的方法来确定。18灵敏度19•灵敏度是指一个分析方法或分析仪器在被测物质改变单位质量或单位浓度时所引起的响应量变化的程度。它反映了该方法或仪器的分辨能力。灵敏度可因实验条件的改变而变化,但在一定的实验条件下,灵敏度具有相对稳定性。•在实际工作中,可用校准曲线的斜率来度量灵敏度的高低。•校准曲线包括通常所谓的“工作曲线”和“标准曲线”,如图4-2所示。它的直线部分代表了被测物质的质量或浓度与分析方法或仪器的响应量(或其他指示量)之间的定量关系。其数学表达式为A=kc+a图4-2校正曲线20检出限•检出限是指一个分析方法对被测物质在给定的可靠度内能够被检出的最小质量或最低浓度。检出限通常是相对于空白测定而言。在环境监测中,检出限常用最小检出量的绝对量来表示,如0.1μg;也常用最低检出浓度来表示,如0.01mg/L等。要注意,如果实验操作条件改变(如取样体积改变),则最低检出浓度也会产生变化。21监测数据的处理22有效数字及其运算规则有效数字•有效数字是指数据中所有的准确数字和数据的最后一位可疑数字,它们都是直接从实验中测量得到的。例如用滴定管进行滴定操作,滴定管的最小刻度是0.1mL,如果滴定分析中用去标准溶液的体积为15.35mL,前三为15.3是从滴定管的刻度上直接读出来的,而第四位5是在15.3和15.4刻度中间用眼睛估计出来的。显然,前三位是准确数字,第四位不太准确,叫做可疑数字,但这四位都是有效数字,有效数字的位数是四位。•有效数字与通常数学上一般数字的概念是不同的。一般数字仅反映数值的大小,而有效数字既反映测量数值的大小,还反映对一个测量数值的准确程度。例如,用分析天平称得某试样的质量为0.4980g,是四位有效数字,它不仅说明了试样的质量,也表明了最后一位0是可疑的,有±0.0001g的误差。•有效数字的位数说明了仪器的种类和精密程度。例如,用克做单位,分析天平可以准确到小数点后第四位数字,而用台秤只能准确到小数点后第二位数字。23对于数字“0”,可以是有效数字,也可以不是有效数字,要由它在数字中的位置来确定。24•例如:0.0525三位有效数字(第一个非零数字前的“0”不是有效数字);•0.5025四位有效数字(非零数字中间的“0”是有效数字);5.0250五位有效数字(非零数字后的“0”是有效数字)。•数字的修约规则•在处理数据时,涉及到各测量值的有效数字位数可能不同,因此,应按照下面所述的计算规则,确定各测量值的有效数字位数。各测量值的有效数字位数确定之后,就要将它后面多余的数字舍弃。舍弃多余数字的过程称为“数字修约”过程,它所遵循的规则称为“数字修约规则”,现在通行的数字修约规则如下。•当测量值中被修约的那个数字等于或小于4时,该数字舍去;等于或大于6时,进位;等于5而且5的右面数字不全为零时,进位;等于5时而且5的右面数字全为零时,如进位后测量值末位数是偶数则进位,如舍去后末位数是偶数则舍去。例如,将下列测量值修约为三位有效数字时,结果如下25•••264.0433→4.044.0463→4.054.0353→4.044.0350→4.044.0650→4.064.0483→4.05•数字修约时,只允许对原测量值一次修约到所需的位数,不能分次修约,例如,将15.4546修约到为四位有效数字时,应该为15.45,不可以先修约为15.455,再修约为15.46。运算规则•效数字的运算结果所保留的位数应遵守下列规则。1.加减法几个数据相加减后的结果,其小数点后的位数应与各数据中小数点后位数最少的相同。在运算时,各数据可先比小数点后位数最少的多留一位小数,进行加减,然后按上述规则修约。27•如0.0121,1.5078和30.64三个数据相加,各数据中小数点后位数最少的为30.64(两位)则先将0.0121修约为0.012,将1.5078修约为1.508,然后相加,即•0.012+1.508+30.64=32.160•最后按小数点后保留两位修约,得32.16。2.乘除法几个数据相乘除后的结果,其有效数字的位数应与各数据中有效数字位数最少的相同,在运算时先多保留一位,最后修约。例如O.0121,3.42361,50.3426三个数据相乘,即0.0121×3.42361×50.3426=O.0121×3.424×50.34=2.085606336=2.09•当数据的第一位有效数字是8或9时,在乘除运算中,该数据的有效数字的位数可多算一位。如9.645,应看作五位有效数字。283.乘方和开方一个数据乘方和开方的结果,其有效数字的位数与原数据的有效数字位数相同。如:6.832=46.6489,修约为46.6。4.对数在对数运算中,所得结果的小数点后位数(不包括首数)应与真数的有效数字位数相同。•常数(如π、e等)和系数、倍数等非测量值,可认为其有效数字位数是无限的。在运算中可根据需要取任意位数都可以,不影响运算结果。如:某质量的2倍,O.124(g)×2=0.248(g),结果取三位有效数字。•求四个或四个以上测量数据的平均值时,其结果的有效数字的位数增加一位。•误差和偏差的有效数字最多只取两位,但运算过程先不修约,最后修约到要求的位数。29可疑数据的取舍•在一组平行试验所得的结果数据中,常常会有个别数据和其他数据相差很大。有的数据明显影响实验结果可信度,影响全组数据平均值的准确性,当测定次数不太多时,影响尤为显著。这种数据叫作“离群数据”。如果明确知道是因为实验条件发生明显变化或实验过程中的过失误差而造成的,则应该果断剔除。30•可是,在多数情况下,很难判断哪些数据是离散数据,因为正常的数据也有一定的离散性。绝不能任意地剔除一些误差较大但并非离群的数据。在环境监测分析中,常用下列方法来对可疑数据进行取舍。•1.Grubbs检验法•2.Dixon检验法•3.标准偏差法31分析结果的统计学表示法——置信区间32•由于分析误差的正态分布规律性,当测定次数n越多时,各次测定结果的算术平均值量就越接近于真值。•但在实际工作中,测定次数总是有限的,这样所得的平均值作为分析结果是否可靠,或者说,当测定次数有限时,平均值作为真值的可靠度怎样?对于要求准确度较高的分析工作,提出分析报告时,不仅要给出分析结果的平均值,还要同时指出真值所在的范围(称为置信区间)以及真值落在此范
本文标题:环境监测数据处理(PPT33页)
链接地址:https://www.777doc.com/doc-919893 .html