您好,欢迎访问三七文档
高二数学优秀教案正视高二的挑战,认清自己,明确高二的目标,意义重大。因为,在高二的这个岔口,两条路渐渐岔开了。来看看高二的优秀数学教案吧!欢迎咨询!高二数学优秀教案1教学目标1、知识与技能(1)理解并掌握正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性;(2)能熟练运用正弦函数的性质解题。2、过程与方法通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。3、情感态度与价值观通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。教学重难点重点:正弦函数的性质。难点:正弦函数的性质应用。教学工具投影仪教学过程创设情境,揭示课题同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在R上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?探究新知让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:(1)正弦函数的定义域是什么?(2)正弦函数的值域是什么?(3)它的最值情况如何?(4)它的正负值区间如何分?(5)?(x)=0的解集是多少?师生一起归纳得出:1.定义域:y=sinx的定义域为R2.值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]高二数学优秀教案2教学准备教学目标1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理垂直的问题;4.掌握向量垂直的条件.教学重难点教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用教学过程1.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cosq叫a与b的数量积,记作a×b,即有a×b=|a||b|cosq,(0≤θ≤π).并规定0向量与任何向量的数量积为0.×探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?2、两个向量的数量积与实数乘向量的积有什么区别?(1)两个向量的数量积是一个实数,不是向量,符号由cosq的符号所决定.(2)两个向量的数量积称为内积,写成a×b;今后要学到两个向量的外积a×b,而a×b是两个向量的数量的积,书写时要严格区分.符号“·”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a?0,且a×b=0,则b=0;但是在数量积中,若a?0,且a×b=0,不能推出b=0.因为其中cosq有可能为0.高二数学优秀教案3教学目标1、知识与技能(1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。2、过程与方法通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。3、情感态度与价值观通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。教学重难点重点:感受周期现象的存在,会判断是否为周期现象。难点:周期函数概念的理解,以及简单的应用。教学工具投影仪教学过程创设情境,揭示课题同学们:我们生活在海南岛非常幸福,可以经常看到大海,陶冶我们的情操。众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。再比如,[取出一个钟表,实际操作]我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。所以,我们这节课要研究的主要内容就是周期现象与周期函数。(板书课题)探究新知1.我们已经知道,潮汐、钟表都是一种周期现象,请同学们观察钱塘江潮的图片(投影图片),注意波浪是怎样变化的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。请你举出生活中存在周期现象的例子。(单摆运动、四季变化等)(板书:一、我们生活中的周期现象)2.那么我们怎样从数学的角度研究周期现象呢?教师引导学生自主学习课本P3——P4的相关内容,并思考回答下列问题:①如何理解“散点图”?②图1-1中横坐标和纵坐标分别表示什么?③如何理解图1-1中的“H/m”和“t/h”?④对于周期函数的定义,你的理解是怎样?以上问题都由学生来回答,教师加以点拨并总结:周期函数定义的理解要掌握三个条件,即存在不为0的常数T;x必须是定义域内的任意值;f(x+T)=f(x)。(板书:二、周期函数的概念)3.[展示投影]练习:(1)已知函数f(x)满足对定义域内的任意x,均存在非零常数T,使得f(x+T)=f(x)。求f(x+2T),f(x+3T)略解:f(x+2T)=f[(x+T)+T]=f(x+T)=f(x)f(x+3T)=f[(x+2T)+T]=f(x+2T)=f(x)本题小结,由学生完成,总结出“周期函数的周期有无数个”,教师指出一般情况下,为避免引起混淆,特指最小正周期。(2)已知函数f(x)是R上的周期为5的周期函数,且f(1)=2005,求f(11)略解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2005(3)已知奇函数f(x)是R上的函数,且f(1)=2,f(x+3)=f(x),求f(8)略解:f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2巩固深化,发展思维1.请同学们先自主学习课本P4倒数第五行——P5倒数第四行,然后各个学习小组之间展开合作交流。2.例题讲评例1.地球围绕着太阳转,地球到太阳的距离y是时间t的函数吗?如果是,这个函数y=f(t)是不是周期函数?例2.图1-4(见课本)是钟摆的示意图,摆心A到铅垂线MN的距离y是时间t的函数,y=g(t)。根据钟摆的知识,容易说明g(t+T)=g(t),其中T为钟摆摆动一周(往返一次)所需的时间,函数y=g(t)是周期函数。若以钟摆偏离铅垂线MN的角θ的度数为变量,根据物理知识,摆心A到铅垂线MN的距离y也是θ的周期函数。例3.图1-5(见课本)是水车的示意图,水车上A点到水面的距离y是时间t的函数。假设水车5min转一圈,那么y的值每经过5min就会重复出现,因此,该函数是周期函数。3.小组课堂作业(1)课本P6的思考与交流(2)(回答)今天是星期三那么7k(k∈Z)天后的那一天是星期几?7k(k∈Z)天前的那一天是星期几?100天后的那一天是星期几?五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业1.作业:习题1.1第1,2,3题.2.多观察一些日常生活中的周期现象的例子,进一步理解它的特点.课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。(3)你在这节课中的表现怎样?你的体会是什么?课后习题作业1.作业:习题1.1第1,2,3题.2.多观察一些日常生活中的周期现象的例子,进一步理解它的特点.板书略
本文标题:高二数学优秀教案
链接地址:https://www.777doc.com/doc-9217082 .html