您好,欢迎访问三七文档
高一的数学下教案用正余弦定理解决实际问题的常见题型有:测量距离、测量高度、测量角度、计算面积、导航问题、物理问题等。我们来看看高一的数学教案吧!欢迎咨询!高一的数学下教案1教学准备教学目标知识目标等差数列定义等差数列通项公式能力目标掌握等差数列定义等差数列通项公式情感目标培养学生的观察、推理、归纳能力教学重难点教学重点等差数列的概念的理解与掌握等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用教学过程由__《红高粱》主题曲“酒神曲”引入等差数列定义问题:多媒体演示,观察----发现?一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,通常用字母d表示。例1:观察下面数列是否是等差数列:….二、等差数列通项公式:已知等差数列{an}的首项是a1,公差是d。则由定义可得:a2-a1=da3-a2=da4-a3=d……an-an-1=d即可得:an=a1+(n-1)d例2已知等差数列的首项a1是3,公差d是2,求它的通项公式。分析:知道a1,d,求an。代入通项公式解:∵a1=3,d=2∴an=a1+(n-1)d=3+(n-1)×2=2n+1例3求等差数列10,8,6,4…的第20项。分析:根据a1=10,d=-2,先求出通项公式an,再求出a20解:∵a1=10,d=8-10=-2,n=20由an=a1+(n-1)d得∴a20=a1+(n-1)d=10+(20-1)×(-2)=-28例4:在等差数列{an}中,已知a6=12,a18=36,求通项an。分析:此题已知a6=12,n=6;a18=36,n=18分别代入通项公式an=a1+(n-1)d中,可得两个方程,都含a1与d两个未知数组成方程组,可解出a1与d。解:由题意可得a1+5d=12a1+17d=36∴d=2a1=2∴an=2+(n-1)×2=2n练习1.判断下列数列是否为等差数列:①23,25,26,27,28,29,30;②0,0,0,0,0,0,…③52,50,48,46,44,42,40,35;④-1,-8,-15,-22,-29;答案:①不是②是①不是②是等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a等于()A.1B.-1C.-1/3D.5/11提示:(-3a-5)-(a-6)=(-10a-1)-(-3a-5)3.在数列{an}中a1=1,an=an+1+4,则a10=.提示:d=an+1-an=-4教师继续提出问题已知数列{an}前n项和为……作业P116习题3.21,2高一的数学下教案2教学准备教学目标掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.教学重难点掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题.教学过程等比数列性质请同学们类比得出.方法规律1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题.方程观点是解决这类问题的基本数学思想和方法.2、判断一个数列是等差数列或等比数列,常用的方法使用定义.特别地,在判断三个实数a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决.示范举例例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为.(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=.例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数.例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项.高一的数学下教案3教学准备教学目标1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路(1)分析,(2)建模,(3)求解,(4)检验;2、实际问题中的有关术语、名称:(1)仰角与俯角:均是指视线与水平线所成的角;(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;3、用正弦余弦定理解实际问题的常见题型有:测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;教学重难点1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路(1)分析,(2)建模,(3)求解,(4)检验;2、实际问题中的有关术语、名称:(1)仰角与俯角:均是指视线与水平线所成的角;(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;3、用正弦余弦定理解实际问题的常见题型有:测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;教学过程一、知识归纳1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路(1)分析,(2)建模,(3)求解,(4)检验;2、实际问题中的有关术语、名称:(1)仰角与俯角:均是指视线与水平线所成的角;(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;3、用正弦余弦定理解实际问题的常见题型有:测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;二、例题讨论一)利用方向角构造三角形四)测量角度问题例4、在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东。
本文标题:高一的数学下教案
链接地址:https://www.777doc.com/doc-9217098 .html